PDF下载 分享
[1]苏展,于金山,裴锋,等.溶剂热法制备形貌可控的NiCo2O4超电材料及其性能研究[J].电镀与精饰,2021,(12):1-6.[doi:10.3969/j.issn.1001-3849.2021.12.001]
 SU Zhan,YU Jinshan,PEI Feng,et al.Preparation of NiCo2O4 Supercapacitor Electrode Materials with Controllable Morphology by Solvent-Thermal Method and Research of Their Properties[J].Plating & Finishing,2021,(12):1-6.[doi:10.3969/j.issn.1001-3849.2021.12.001]
点击复制

溶剂热法制备形貌可控的NiCo2O4超电材料及其性能研究

参考文献/References:

[1] Lin Z, Taberna P L, Simon P. Graphene-based supercapacitors using eutectic ionic liquid mixture electrolyte[J]. Electrochimica Acta, 2016, 206: 446-451.
[2] Zhou D, Lin H, Zhang F, et al. Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes[J]. Electrochimica Acta, 2015, 161: 427-435.
[3] Hsieh T H, Keh H J. Boundary effects on electrophoresis of a colloidal cylinder with a nonuniform zeta potential distribution[J]. Journal of Colloid and Interface Science, 2007, 315(1): 343-354.
[4] Zheng D, Zhao F, Li Y, et al. Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors[J]. Electrochimica Acta, 2019, 297: 767-777.
[5] Castro E. Electrochemical characterization of porous nickel-cobalt oxide electrodes[J]. International Journal of Hydrogen Energy, 2004, 29(3): 255-261.
[6] Chai Y, Li Z, Wang J, et al. Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors[J]. Journal of Alloys and Compounds, 2019, 775: 1206-1212.
[7] Zhang Y, Park S J. Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor[J]. Carbon, 2017, 122: 287-297.
[8] Yan Y, Li B, Guo W, et al. Vanadium based materials as electrode materials for high performance supercapacitors[J]. Journal of Power Sources, 2016, 329: 148-169.
[9] Zhang Y, Li L, Su H, et al. Binary metal oxide: advanced energy storage materials in supercapacitors[J]. Journal Materials Chemistry A, 2015, 3(1): 43-59.
[10] Dubal D P, Gomez-Romero P, Sankapal B R, et al. Nickel cobaltite as an emerging material for supercapacitors: An overview[J]. Nano Energy, 2015, 11: 377-399.
[11] Li Y, Han X, Yi T, et al. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes[J]. Journal of Energy Chemistry, 2019, 31: 54-78.
[12] Hu J, Li M, Lv F, et al. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors[J]. Journal of Power Sources, 2015, 294: 120-127.
[13] Yang, M Y, Lv F C, Wang Z Y, et al. Binder-free hydrogenated NiO-CoO hybrid electrodes for high performance supercapacitors[J]. RSC Advances, 2015, 5(40): 31725-31731.
[14] Bhagwan J, Nagaraju G, Ramulu B, et al. Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2019, 299: 509-517.
[15] Wang H, Lu J, Yao S, et al. Sodium dodecyl sulfate-assisted synthesis of flower-like NiCo2O4 microspheres with large specific surface area for supercapacitors[J]. Journal of Alloys and Compounds, 2018, 744: 187-195.
[16] Zhang J, Wang Y, Yu C, et al. Hierarchical NiCo2O4/MnO2 core-shell nanosheets arrays for flexible asymmetric supercapacitor[J]. Journal of Materials Science, 2020, 55(2): 688-700.
[17] Xu K, Yang J, Hu J. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2018, 511: 456-462.
[18] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4): 1025-1102.
[19] Wu J, Lü X, Zhang L, et al. Dielectric constant controlled solvothermal synthesis of a TiO2 photocatalyst with tunable crystallinity: a strategy for solvent selection[J]. European Journal of Inorganic Chemistry, 2009(19): 2789-2795.
[20] Xi G, Xiong K, Zhao Q, et al. Nucleation-dissolution-recrystallization: a new growth mechanism fort -selenium nanotubes[J]. Crystal Growth & Design, 2006, 6(2): 577-582.
[21] Feng X, Huang Y, Li C, et al. Controllable synthesis of porous NiCo2O4/NiO/Co3O4 nanoflowers for asymmetric all-solid-state supercapacitors[J]. Chemical Engineering Journal, 2019, 368: 51-60.
[22] Liu Z, Zhou W, Wang S, et al. Facile synthesis of homogeneous core-shell Co3O4 mesoporous nanospheres as high performance electrode materials for supercapacitor[J]. Journal of Alloys and Compounds, 2019, 774: 137-144.
[23] Wang X, Fang Y, Shi B, et al. Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high-performance supercapacitors[J]. Chemical Engineering Journal, 2018, 344: 311-319.

相似文献/References:

[1]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
 ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(12):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[2]于金山,苏 展,裴 锋,等.超级电容器寿命预测的研究进展[J].电镀与精饰,2020,(12):26.[doi:10.3969/j.issn.1001-3849.2020.12.0060]
 YU Jinshan,SU Zhan,PEI Feng,et al.Research Progress on Life Prediction of Supercapacitors[J].Plating & Finishing,2020,(12):26.[doi:10.3969/j.issn.1001-3849.2020.12.0060]
[3]苏展,于金山,董 浩,等.花状Ni(OH)2的制备及其电化学性能研究[J].电镀与精饰,2022,(2):16.[doi:10.3969/j.issn.1001-3849.2022.02.004]
 SU Zhan,YU Jinshan,DONG Hao,et al.Preparation and Electrochemical Properties of Floral Ni ( OH ) 2[J].Plating & Finishing,2022,(12):16.[doi:10.3969/j.issn.1001-3849.2022.02.004]
[4]苏 展,于金山,董 浩,等.正交试验法优化Ni(OH)2超电材料溶剂热法制备工艺[J].电镀与精饰,2022,(6):47.
 SU Zhan,YU Jinshan,DONG Hao,et al.Preparation Process of Ni ( OH ) 2 Positive Electrode Materials by Solvothermal Method and Orthogonal Test[J].Plating & Finishing,2022,(12):47.
[5]巩鹏妮,弓巧娟 *,梁云霞,等.镍钴硫化物、石墨烯与聚苯胺复合材料在超级电容器中的应用研究进展[J].电镀与精饰,2023,(3):90.[doi:10.3969/j.issn.1001-3849.2023.03.013]
 Gong Pengni,Gong Qiaojuan *,Liang Yunxia,et al.Research progress of Ni-Co sulfide graphene and polyaniline composites applied in supercapacitors[J].Plating & Finishing,2023,(12):90.[doi:10.3969/j.issn.1001-3849.2023.03.013]

备注/Memo

收稿日期: 2020-04-24;修回日期: 2020-05-26
*通信作者: 王宏智(1973—),男,博士,副教授,主要研究方向:新能源材料、金属基复合材料、电沉积与化学沉积等。

更新日期/Last Update: 2021-12-10