GAO Xinxin,LIANG Xiaoming*,LIU yu,et al.Hydrogen Embrittlement of Dissimilar Steel Welded Joints with 0.9 Strength Ratio[J].Plating & Finishing,2019,(8):5-9.[doi:10.3969/j.issn.1001-3849.2019.08.002]
0.9强度比异种钢接头的氢脆性能
- Title:
- Hydrogen Embrittlement of Dissimilar Steel Welded Joints with 0.9 Strength Ratio
- Keywords:
- dissimilar steel welded joints; microstructures; electrochemical hydrogen charging; hydrogen embrittlement
- 文献标志码:
- A
- 摘要:
- 在海水环境中,为探索新型异种钢接头的氢脆性能,采用金相试验、氢渗透试验、动态充氢拉伸试验研究了该材料的氢渗透行为及氢脆敏感性,并利用了扫描电镜观察断口组织形貌。结果表明:焊接接头焊缝区氢的溶解度位于两母材之间,与其致密的针状铁素体组织有关;靠近低强度一侧母材的热影响区氢的有效扩散系数相对较小、氢溶解度较大,具有明显的吸氢倾向,与其区域金相显微组织粗大、缺陷较多有关。动态充氢拉伸试验结果表明:随着极化电位的负移,异种钢焊接件的断口延伸率和断面收缩率逐渐减小,形貌特征由塑性向解理断裂方向转变,氢脆敏感性增强;当极化电位达到约-950 mV时,氢脆现象显著,断裂位置在靠近熔合线的焊缝区。
- Abstract:
- To explore the hydrogen embrittlement of new dissimilar steel welded joints in seawater, the hydrogen permeation behavior and hydrogen embrittlement sensitivity of the material were studied by metallographic test, hydrogen permeation test and dynamic hydrogen stretching test, and the fracture morphology was observed with SEM. The results show that the solubility of hydrogen in weld area of weld joint is between two base metal and its compact acicular ferrite structure. The effective diffusion coefficient of hydrogen is relatively small and the hydrogen solubility is large in HAZ near the side of low strength steel, which has obvious tendency of hydrogen absorption. And it is related to the large size and many defects of the metallographic microstructure of HAZ. The results of dynamic hydrogen stretching test showed that the fracture elongation and the section shrinkage of the dissimilar steel weldments gradually decreased with the negative shift of the polarization potential, and the fracture morphology gradually changes from plastic fracture to cleavage fracture direction, and the sensitivity of hydrogen embrittlement increases. When the polarization potential was about -950 mV, the hydrogen embrittlement phenomenon was obvious, and the fracture location was near the fusion line.
参考文献/References:
[1] Zhou C, Huang Q, Guo Q, et al. Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steeland inconel 625 alloy[J]. Corrosion Science, 2016, 110:242-252.
[2] Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy 182/SA508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment[J]. Journal of Nuclear Materials, 2008, 378(2):197-210.
[3] Batt C, Ddodson J, Robinson M J. Hydrogen embrittlement of cathodically protected high strength steel in sea water and seabed sediment[J]. British Corrosion Journal, 2002, 37(3):194-198.
[4] Lindley C, Rudd W J. Influence of the level of cathodic protection on the corrosion fatigue properties of high strength welded joints[J]. Marine Structures, 2001, 14(4):397-416.
[5] 刘玉, 李焰, 李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[6] 高心心, 郭建章, 张海兵. 1000MPa级高强钢焊接件的氢脆敏感性研究[J]. 材料导报, 2017, 31(3):93-104.
[7] 孙永伟, 陈继志, 刘军. 1000MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, (11):1315-1324.
[8] LI H, WANG Z, CHEN L, et al. Research on Advanced Materials for Li-ion Batteries[J]. Advanced Materials, 2010, 21(45):4593-4607.
[9] 刘全坤. 材料成形基本原理[M]. 合肥: 机械工业出版社, 2010.
[10] Capelle J, Dmytrakh I, Pluvinage G.Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength[J]. Corrosion Science, 2010, 52(5): 1554-1559.
[11] Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel[J]. Materials Chemistry and Physics, 2003, 77(2): 447-454.
[12] 褚武扬. 断裂与环境断裂[M]. 北京: 科学出版社, 2000.
[13] 郭建章, 高心心, 张海兵. 异种高强钢气保焊焊接接头的氢脆敏感性[J]. 金属热处理, 2017, 42(7):55-60.
[14] 高心心. 异种高强钢焊接接头腐蚀及氢脆性能研究[D]. 青岛:青岛科技大学, 2017.
相似文献/References:
[1]高心心,梁晓明*,刘保成,等.新型异种钢接头组织和耐腐蚀性能研究[J].电镀与精饰,2019,(9):13.[doi:10.3969/j.issn.1001-3849.2019.09.003]
GAO Xinxin,LIANG Xiaoming*,LIU Baocheng,et al.Microstructure and Corrosion Resistance of New Dissimilar Steel Welded Joint[J].Plating & Finishing,2019,(8):13.[doi:10.3969/j.issn.1001-3849.2019.09.003]
[2]王金荣,许 强,逯志强,等.980 MPa级汽车用钢氢致延迟断裂性能[J].电镀与精饰,2021,(1):41.[doi:10.3969/j.issn.1001-3849.2021.01.0080]
WANG Jinrong,XU Qiang,LU Zhiqiang,et al.Hydrogen Induced Delayed Fracture of 980 MPa Grade Automotive Steel[J].Plating & Finishing,2021,(8):41.[doi:10.3969/j.issn.1001-3849.2021.01.0080]
[3]姚国林*,罗新宇,陈子然.Q345B钢表面激光熔覆工艺的PLC控制与涂层性能研究[J].电镀与精饰,2023,(12):42.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.006]
Yao Guolin*,Luo Xinyu,Chen Ziran.Study on laser cladding technology on Q345B steel surface controlled by PLC and it s coating property[J].Plating & Finishing,2023,(8):42.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.006]
[4]钱绍祥.激光喷丸处理对铁基熔覆层的组织演变和磨损性能的影响[J].电镀与精饰,2024,(9):40.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.006]
Qian Shaoxiang.Effects of laser peening on the microstructure evolution and wear performance of Fe-based cladding layer[J].Plating & Finishing,2024,(8):40.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.006]
[5]所彭帮*,龙 金,胡林荣,等.Ni5Al/85Ni-15C复合涂层的性能及应用[J].电镀与精饰,2024,(12):61.
Suo Pengbang *,Long Jin,Hu Linrong,et al.Performance and application of Ni5Al/85Ni-15C composite coating[J].Plating & Finishing,2024,(8):61.
[6]菅光霄*,王清华,药晓江,等.doi: 10.3969/j.issn.1001-3849.2025.02.00542CrMo钢表面激光熔覆复合涂层的显微组织与性能[J].电镀与精饰,2025,(02):30.
Chen Yan,Xu Huanhuan.Microstructure and properties of laser cladding composite coating on 42CrMo steel surface Jian Guangxiao1*, Wang Qinghua1, Yao Xiaojiang1, Ding Yuanhao1,[J].Plating & Finishing,2025,(8):30.
备注/Memo
收稿日期: 2019-04-26;修回日期: 2019-05-05
通信作者: 梁晓明,email:398386555@qq.com
基金项目: 山东省重点研发计划项目(2018GNC112007),山东省高校科研计划项目(J18KA015)