TIAN Peipei,NIU Zongwei*,LIU Kefeng,et al.Effect of Current Density on Wettability of Superhydrophobic Ni-MoS2-Al2O3 Composite Coating[J].Plating & Finishing,2021,(10):14-20.[doi:10.3969/j.issn.1001-3849.2021.10.003]
电流密度对超疏水Ni-MoS2-Al2O3复合镀层润湿性的影响
- Title:
- Effect of Current Density on Wettability of Superhydrophobic Ni-MoS2-Al2O3 Composite Coating
- 文献标志码:
- A
- 摘要:
- 针对腐蚀介质对不锈钢表面的点蚀问题,以304L不锈钢为基体,通过复合电沉积方法制备超疏水Ni-MoS2-Al2O3复合镀层,探究不同电流密度对表面形貌、元素含量和润湿性的影响,并与纯镍涂层进行比较。结果表明:当加入MoS2和Al2O3颗粒后,镍的成核过程发生变化,镀层表面含有大量团簇状的微纳米球凸起。在电流密度为8 A/dm2的实验条件下,经过硬脂酸乙醇溶液改性后,接触角的最大值为159.6 °,具有良好的疏水性、低附着力和自清洁性。且镀层中MoS2和Al2O3颗粒含量最高,分别为5.6 %和7.1 %。
- Abstract:
- In order to solve the pitting corrosion problem of stainless steel in corrosive medium, superhydrophobic Ni-MoS2-Al2O3 composite coating was prepared by composite electrodeposition on 304L stainless steels. The effects of different current density on the surface morphology, element content and wettability were explored and compared with that of pure nickel coating. The results showed that the nucleation process of nickel changed with the addition of MoS2 and Al2O3 particles, and the surface of the coating was composed of clusters of micro and nano spheres. The contact angle reached 159.6 ° at the current density of 8 A/dm2 after the coating was modified by stearic acid ethanol solution. And the coating had good hydrophobicity, low adhesion and self-cleaning. The contents of MoS2 and Al2O3 particles in the coating were the highest, which were 5.6 % and 7.1 %, respectively.
参考文献/References:
[1] Radulovic Z, Porter L M, Kim T K, et al. Comparative bioinformatics,temporal and spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides[J]. Ticks and Tick-Borne Diseases,2014,5(3):287-298.
[2] 彭华乔, 罗振军, 李开宇, 等. 盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究[J]. 应用化工, 2019, 48(12): 2900-2904.
Peng H Q, Luo Z J, Li K Y, et al. Study on preparation process and self-cleaning performance of superhydrophobic aluminum surfaces fabricated by hydrochloric acid etching[J]. Applied Chemical Industry, 2019, 48(12):2900-2904 (in Chinese).
[3] Liu G Y, Yuan Y, Jiang Z, et al. Anti-frosting/anti-icing property of nano-ZnO superhydrophobic surface on Al alloy prepared by radio frequency magnetron sputtering[J]. Materials Research Express, 2020, 7(2): 026401.
[4] 李思奇, 刘晓为, 邱成军, 等. 用于固液界面减阻无氟超疏水表面制备新方法[J]. 哈尔滨工业大学学报, 2019,51(10): 152-156.
Li S Q, Liu X W, Qiu C J, et al. A new method for fluorine-free superhydrophobic surface used for drag-reduction at solid-liquid interface[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 152-156 (in Chinese).
[5] 凡轶男. 超亲水复合不锈钢网的制备及其油水分离性能研究[D]. 徐州: 中国矿业大学, 2018.
[6] Xiao X Y, Xie W, Ye Z H. Preparation of corrosion-resisting superhydrophobic surface on aluminium substrate[J]. Surface Engineering, 2019, 35(5): 411-417.
[7] 蒋斌, 曾利兰, 梁涛, 等. 电沉积法制备316L不锈钢表面微纳结构超疏水涂层及其耐海水腐蚀性能[J]. 腐蚀与防护, 2018, 39(10): 747-751+757.
Jiang B, Zeng L L, Liang T, et al. Preparation of super-hydrophobic coating with micro-nano structure by electrodeposition and its corrosion resistance to seawater[J]. Corrosion and Protection, 2018, 39(10): 747-751+757 (in Chinese).
[8] 曹京宜, 张海永, 李佳欢, 等. 超疏水涂层在航空航天领域研究进展与应用[J]. 化学工程师, 2017, 31(1): 57-60.
Cao J Y, Zhang H Y, Li J H, et al. Research progress and application of super-hydrophobic coating in the areas of aircraft and aerospace[J]. Chemical Engineer, 2017, 31(1): 57-60 (in Chinese).
[9] 徐利云, 殷伟伦, 邓佳雯, 等. 超疏水棉织物的等离子体制备工艺及性能[J]. 东华大学学报(自然科学版), 2019,45(5): 650-657+694.
Xu L Y, Yin W L, Deng J W, et al. Plasma preparation process and properties of super-hydrophobic cotton fabric[J]. Journal of Donghua University(Natural Science),2019, 45(5): 650-657+694 (in Chinese).
[10] 林玮炜. 超疏水表面制备及其抗凝血性能研究[D]. 杭州: 浙江工业大学, 2010.
[11] 包晓慧. 刻蚀法制备SiC/Al复合材料超疏水/超疏油表面试验研究[D]. 焦作: 河南理工大学, 2016.
[12] 庄奥运. 基于气溶胶辅助化学气相沉积技术制备耐磨EP/PDMS超疏水涂层及其防覆冰性能研究[D]. 重庆:重庆大学, 2018.
[13] 余俊. 超疏水不锈钢网的制备及其油水分离的应用研究[D]. 武汉: 武汉工程大学, 2018.
[14] 代学玉, 汪永丽, 高兰玲. 化学沉积法制备超疏水表面的研究进展[J]. 山东化工, 2017, 46(18): 57-58.
Dai X Y, Wang Y L, Gao L L. Progress in preparation of the superhydrophobic surface by chemical deposition[J]. Shandong Chemical Industry, 2017, 46(18): 57-58 (in Chinese).
[15] Chen C, Hao L M, Chen C L. A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures[J]. Colloids and Surfaces, 2012, 401: 1-7.
[16] She Z X, Li Q, Wang Z W, et al. Highly anticorrosion,self-cleaning superhydrophobic Ni-Co surface fabricated on AZ91D magnesium alloy[J]. Surface & Coatings Technology, 2014, 251: 7-14.
[17] Shirtcliffe N J, McHale G, Newton M I, et al. Wetting and wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir, 2005, 21(3): 937-943.
[18] Geng W Y, Hu A M, Li M. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array[J]. Applied Surface Science, 2012, 263:821-824.
[19] Huang S Y, Hu Y W, Pan W. Relationship between the structure and hydrophobic performance of Ni-TiO2 nanocomposite coatings by electrodeposition[J]. Surface & Coatings Technology, 2011, 205(13-14): 3872-3876.
[20] Zhao G C, Xue Y P, Huang Y F, et al. One-step electrodeposition of a self-cleaning and corrosion resistant Ni/WS2 superhydrophobic surface[J]. RSC Advances, 2016,6(64): 59104-59112.
[21] 汪骥, 陈昌毅, 于鑫, 等. 纳米复合电沉积制备钢基超疏水表面工艺探究[J]. 哈尔滨工程大学学报, 2016, 37(5):660-665.
Wang J, Chen C Y, Yu X, et al. Preparation of a superhydrophobic surface on steel substrate by nanocomposite electrodeposition[J]. Journal of Harbin Engineering University, 2016, 37(5): 660-665 (in Chinese).
[22] Maharana H S, Katiyar P K, Mondal K. Structure dependent super-hydrophobic and corrosion resistant behavior of electrodeposited Ni-MoSe2-MWCNT coating[J]. Applied Surface Science, 2019, 478: 26-37.
[23] He Y, Sun W T, Wang S C, et al. An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties[J]. Electrochimica Acta, 2017,245: 872-882.
[24] 彭成章, 朱玲玲. 电沉积Ni-P/纳米Al2O3复合镀层的摩擦磨损与耐铝液侵蚀性能[J]. 中国有色金属学报, 2010, 20(6): 1177-1182.
Peng C Z, Zhu L L. Tribological properties and erosion resistance of electroplated Ni-P/nano-Al2O3 composite coatings to aluminum liquid[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6): 1177-1182 (in Chinese).
[25] Liang J S, Li D, Wang D Z, et al. Preparation of stable superhydrophobic fifilm on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification[J]. Applied Surface Science, 2014, 293(28): 265-270.
[26] Yang Y, Cheng Y F. Mechanistic aspects of electrodeposition of Ni-Co-SiC composite nano-coating on carbon steel[J]. Electrochimica Acta, 2013, 109: 638-644.
[27] 苌清华, 陈春梅, 孟龙, 等. 电流密度对铝合金表面电镀Ni-SiC的影响[J]. 轻合金加工技术, 2011, 39(1): 43-46.
Chang Q H, Chen C M, Meng L, et al. Effect of current density to Ni-SiC electroplating of aluminum alloy[J]. Light Alloy Fabrication Technology, 2011, 39(1): 43-46 (in Chinese).
[28] 梁苗苗. 超疏水镁合金制备方法及其耐腐蚀性研究[D]. 太原: 太原理工大学, 2016.
[29] 吴洁, 余新泉, 张友法, 等. 铝合金表面构建超疏水性的化学改性机理[J]. 东南大学学报(自然科学版), 2011, 41(5): 1036-1041.
Wu J, Yu X Q, Zhang Y F, et al. Mechanism of chemical modification for fabricating superhydrophobic aluminum alloy[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(5): 1036-1041 (in Chinese).
相似文献/References:
[1]詹中伟,葛玉麟,田礼熙*,等.搅拌速度和颗粒尺寸对复合电沉积Ni-cBN复合量的影响及机理分析[J].电镀与精饰,2022,(1):1.[doi:10.3969/j.issn.1001-3849.2022.01.001]
ZHAN Zhongwei,GE Yulin TIAN Lixi*,WANG Shuaixing,et al.Effect of Stirring Speed and Particle Size on the Particle Content in the Ni-cBN Composite Plating and Its Mechanism[J].Plating & Finishing,2022,(10):1.[doi:10.3969/j.issn.1001-3849.2022.01.001]
[2]唐浩铭,孙国富,潘高峰,等. 不锈钢基超疏水表面的制备及其性能研究 [J].电镀与精饰,2022,(7):42.[doi:10.3969/j.issn.1001-3849.2022.07.008]
TANG Haoming,SUN Guofu,et al.Preparation of Stainless Steel-Based Superhydrophobic Surface and Its Performance[J].Plating & Finishing,2022,(10):42.[doi:10.3969/j.issn.1001-3849.2022.07.008]
[3]张帮彦*,董家键,郑世杰,等.复合电沉积陶瓷颗粒增强金属基复合涂层研究进展[J].电镀与精饰,2023,(1):46.[doi:10.3969/j.issn.1001-3849.2023.01.008]
Zhang Bangyan*,Dong Jiajian,Zheng Shijie,et al.Research progress on the ceramic particle reinforced metal matrix composite coatings prepared by composite electrodeposition[J].Plating & Finishing,2023,(10):46.[doi:10.3969/j.issn.1001-3849.2023.01.008]
[4]收稿日期: 0-0- 修回日期: 0-0-8.Ni-Sn / MoO2 复合电极的制备及析氢性能研究[J].电镀与精饰,2024,(11):36.
Preparation and hydrogen evolution performance of Ni-Sn/MoO 2 composite electrodes Zhu Zirui Xing Lehong * Zhao Yutong Zuo Yue Sun Chenyang Hao Yungui Fu Xiaotong[J].Plating & Finishing,2024,(10):36.
备注/Memo
收稿日期: 2020-07-22;修回日期: 2020-10-21
作者简介: 田佩佩(1995—),女,硕士研究生,email:tpp15615633536@163.com
通信作者: 牛宗伟,email:niuzongwei@sdut.edu.cn
基金项目: 国家自然科学基金资助项目(51775321);山东省自然科学基金资助项目(ZR2015EM053);山东理工大学黄河三角洲研究院创新研究基金资助项目