DONG Tingjian,LI Ke,CHEN Yajun,et al.Research on Thickness Uniformity of Silver Coating Based on Finite Element Simulation[J].Plating & Finishing,2021,(11):7-12.[doi:10.3969/j.issn.1001-3849.2021.11.002]
热轧碳钢SPHC在天津大气环境中的腐蚀行为
- Title:
- Research on Thickness Uniformity of Silver Coating Based on Finite Element Simulation
- 文献标志码:
- A
- 摘要:
- 针对热轧钢SPHC的大气腐蚀问题,通过在天津自然环境下开展为期1年的SPHC钢大气暴露试验,依托腐蚀动力学分析、锈层形貌观察、腐蚀产物成分分析、电化学测试等研究了SPHC钢在天津大气环境中的腐蚀行为。结果表明,在暴晒6个月时,SPHC钢的腐蚀速率开始下降,腐蚀产物主要为γ-FeOOH、α-FeOOH和Fe3O4,随着暴露时间的增加γ-FeOOH逐渐向更稳定的腐蚀产物转化,表面较为致密的腐蚀产物含量增多,同时锈层不断增厚形成了双层结构,对基体的保护性逐渐增强,整体耐蚀性不断提高。
- Abstract:
- Aiming at the atmospheric corrosion problem of hot-rolled steel SPHC, a one-year atmospheric exposure test was carried out in Tianjin. Relying on corrosion kinetic analysis, rust layer morphology, corrosion product analysis and electrochemical test, the atmospheric corrosion behavior of SPHC steel in Tianjin was studied. The result shows that the corrosion rate of SPHC steel begins to decrease after 6 months of exposure. The corrosion products are mainly γ-FeOOH, α-FeOOH and Fe3O4. As the exposure time increases, γ-FeOOH gradually transforms into more stable corrosion products, and the content of denser corrosion products on the surface increases. At the same time, the rust layer continues to thicken and form a double-layer structure, which gradually increases the protection of the substrate and the overall corrosion resistance.
参考文献/References:
[1] 田永, 韦俊. 汽车金属制件腐蚀机理与试验介绍[J]. 电镀与精饰, 2013, 35(9):39-42.
Tian Y, Wei J. Introduction of corrosion mechanism and test for car metal parts[J]. Plating and Finishing, 2013, 35(9):39-42(in Chinese).
[2] 张琳, 赵春英, 王振尧, 等. 模拟工业大气环境中碳钢和耐候钢的腐蚀行为研究[J]. 电镀与精饰, 2015, 37(4):38-41.
Zhang L, Zhao C Y, Wang Z Y, et al. Studies on corrosion behaviors of carbon steel and weathering steel in simulated industrial atmospheric environment[J]. Plating and Finishing, 2015, 37(4):38-41 (in Chinese).
[3] Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data[J]. Nature, 2015, 527: 441-442.
[4] Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. overview for engineers. part I: basic concepts[J]. Construction and Building Materials,2019, 213: 723-737.
[5] Han W, Pan C, Wang Z Y, et al. Initial atmospheric corrosion of carbon steel in industrial environment[J]. Journal of Materials Engineering and Performance, 2015, 24(2):864-874.
[6] Perez, Corvo F. Atmospheric corrosion of steel in a humid tropical climate-influence of pollution, humidity, temperature, solar radiation and rainfall [J]. Corrosion,2012, 40(4):170-175.
[7] 曹公望, 刘雨薇, 张丹丹, 等.Q235和Q345钢在红沿河大气环境中的腐蚀行为[J]. 腐蚀与防护, 2018, 39(1):24-28,34.
Cao G W, Liu Y W, Zhang D D, et al. Corrosion behavior of Q235 and Q345 carbon steel in hongyanhe atmosphere[J]. Corrosion & Protection, 2018, 39(1):24-28,34(in Chinese).
[8] Raffo S, Vassura I, Chiavari C,et al. Weathering steel as a potential source for metal contamination: metal dissolution during 3-year of field exposure in a urban coastal site[J]. Environmental Pollution, 2016, 213:571-584.
[9] Fuente D, Diaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corrosion Science,2011, 53(2):604-617.
[10] Alcántara J, Chico B, Simancas J, et al. An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres[J]. Materials Characterization,2016,118:65-78.
[11] 宋学鑫, 黄松鹏, 汪川, 等.碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10):1355-1365.
Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in hongyanhe[J]. Acta Metallurgica Sinica, 2020, 56(10):1355-1365(in Chinese).
[12] Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel[J]. Corrosion Science, 2015, 97:74-88.
[13] Okada T,Ishii Y,Mizoguchi T,et al. Mssbauer studies on particle volume distribution of α-FeOOH in rust formed on weathering steel[J]. Japanese Journal of Applied Physics, 2000, 39(6A):3382-3391.
[14] Kamimura T, Nasu S, Tazaki T, et al. Muessbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment[J]. Materials Transactions, 2002, 43(4):694-703.
[15] Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization[J]. Corrosion, 2015, 71(7):872-886.
[16] 刘雨薇, 赵洪涛, 王振尧.碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9):1247-1254.
Liu Y W,Zhao H T,Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in nansha marine atmosphere[J]. Acta Metallurgica Sinica, 2020, 56(9):1247-1254 (in Chinese).
[17] Jia J H, Wu W, Cheng X Q, et al. Ni-advanced weathering steels in maldives for two years: corrosion results of tropical marine field test[J]. Construction and Building Materials, 2020, 245:118463.
[18] 吕耀辉, 刘玉欣, 何东昱, 等. 电化学阻抗技术在金属腐蚀及涂层防护中的研究进展[J]. 电镀与精饰, 2018, 40(6):22-28.
Lyu Y H, Liu Y X, He D Y, et al. Development on electrochemical impedance spectroscopy technology in metal corrosion and coating anticorrosion[J]. Plating and Finishing, 2018, 40(6):22-28(In Chinese).
[19] Liu P, Hu L L, Zhao X Y, et al. Investigation of microstructure and corrosion behavior of weathering steel in aqueous solution containing different anions for simulating service environments[J]. Corrosion Science, 2020,170:108686.
[20] Nishimura T, Noda K, Kodama T, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56(9):935-941.
相似文献/References:
[1]胡新钟,蔡昌新*.基于FPGA的镀层腐蚀形貌特征提取[J].电镀与精饰,2023,(6):90.[doi:10.3969/j.issn.1001-3849.2023.06.015]
Hu Xinzhong,Cai Changxin*.Feature extraction of corrosion morphology of coating based on FPGA[J].Plating & Finishing,2023,(11):90.[doi:10.3969/j.issn.1001-3849.2023.06.015]
[2]李 航,李新梅*,杨现臣,等.强腐蚀环境下输电杆塔塔材腐蚀及寿命预测研究进展[J].电镀与精饰,2024,(1):48.[doi:10.3969/j.issn.1001-3849.2024.01.008]
Li Hang,Li Xinmei*,Yang Xianchen,et al.Research progress on corrosion and life prediction of transmission tower materials under strong corrosion environment[J].Plating & Finishing,2024,(11):48.[doi:10.3969/j.issn.1001-3849.2024.01.008]
备注/Memo
收稿日期: 2021-03-31;修回日期: 2021-04-19
作者简介: 董艇舰(1963—),男,博士,副教授,tjdong@cauc.edu.cn.
*通信作者: 宋肖肖,xxsong@cauc.edu.cn
基金项目: 中央高校基本科研业务费项目中国民航大学专项资助(3122019112)