ZHANG Jingjie,LI Yunhong.Surface Treatment of Construction Aluminum and Its Performance[J].Plating & Finishing,2021,(12):12-16.[doi:10.3969/j.issn.1001-3849.2021.12.003]
建筑铝材表面处理及其性能研究
- Title:
- Surface Treatment of Construction Aluminum and Its Performance
- 文献标志码:
- A
- 摘要:
- 选用建筑铝材6063-T6作为基体,分别采用硬质阳极氧化和草酸阳极氧化进行表面处理。比较了未处理及处理后试样的微观形貌、物相、显微硬度、耐磨性能和耐蚀性能,结果表明:硬质阳极氧化和草酸阳极氧化处理后铝材的微观形貌和表面粗糙度与未处理铝材相比有所不同,硬质氧化膜与草酸氧化膜相比较为平整致密。未处理铝材的表面成分以Al元素为主,主要物相为Al相,处理后铝材的表面成分以Al和O元素为主,主要物相为Al相、α-Al2O3相和γ-Al2O3相。硬质阳极氧化和草酸阳极氧化处理后铝材的显微硬度较未处理铝材分别提高了约274 HV、191 HV,摩擦系数明显减小,耐蚀性能有较大程度提高。硬质阳极氧化是提高建筑铝材表面性能的有效措施,在提高建筑铝材的耐蚀性能方面,草酸阳极氧化替代硬质阳极氧化具有可行性。
- Abstract:
- Construction aluminum 6063-T6 was selected as the matrix, and it was treated by hard anodic oxidation and oxalic acid anodic oxidation respectively. The microstructure, phase composition, microhardness, wear resistance and corrosion resistance of untreated and treated sample were investigated. The results showed that there was some differences in the microstructure and surface roughness of the aluminum treated by hard anodic oxidation and oxalic acid anodic oxidation respectively, and hard oxide film was smoother and denser than that of oxalic acid oxide film. The surface composition of untreated aluminum was mainly Al element, and the main phase was Al phase. The surface composition of treated aluminum was mainly Al and O element, and the main phase was Al, α-Al2O3 and γ-Al2O3 phase. Compared with untreated aluminum, the microhardness of the aluminum treated by hard anodic oxidation and oxalic acid anodic oxidation was increased by about 274 HV and 191 HV respectively, the friction coefficient decreased obviously and the corrosion resistance was obviously improved. Hard anodic oxidation was an effective measure to improve the surface performance of construction aluminum. In terms of improving the corrosion resistance of construction aluminum, oxalic acid anodic oxidation was feasible to replace hard anodic oxidation.
参考文献/References:
[1] 李宾,周桓竹,苏学伟,等.铝合金建筑材料的发展现状及应用[J]. 科技视界,2018(14):154-155.
Li B, Zhou H Z, Su X W, et al. The development status and application of aluminum alloy building materials[J]. Science & Technology Vision, 2018(14): 154-155(in Chinese).
[2] 豆杰, 刘纪伟.浅谈铝合金材料及其热处理技术[J]. 中国金属通报, 2019(8): 31-32.
Dou J,Liu J W.Brief discussion on aluminum alloy material and its heat treatment technology[J]. China Metal Bulletin, 2019(8): 31-32(in Chinese).
[3] Wang W, Dong P, Wang H, et al. Synergistic corrosion inhibition effect of molybdate and phosphate ions for anodic oxidation film formed on 2024 aluminum alloy[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2019(34): 426-432.
[4] Leandro G R, Lorena G S, Pedro J A, et al. Assessment of the corrosion resistance of self-ordered anodic aluminum oxide (AAO) obtained in tartaric-sulfuric acid (TSA)[J]. Surface and Coatings Technology, 2020(399): 126-131.
[5] Li J G, Wei H Y, Zhao K, et al. Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films[J]. Thin Solid Films, 2020(713):138-149.
[6] 张宇, 王军, 于赜, 等.铝合金阳极氧化膜耐蚀性的研究[J]. 电镀与环保, 2015, 35(1):41-43.
Zhang Y, Wang J, Yu Z, et al. Study on the corrosion resistance of aluminum alloy anodic oxidation film[J]. Electroplating & Pollution Control, 2015, 35(1):41-43 (in Chinese).
[7] 郝雪龙,何耀祖,樊志罡,等. 6063铝合金阳极氧化膜的耐碱腐蚀性能[J]. 中国表面工程, 2015, 28(4):98-104.
Hao X L, He Y Z, Fan Z G, et al. Alkali corrosion resistance of anodic oxide coating on 6063 aluminum alloy[J]. China Surface Engineering, 2015, 28(4):98-104 (in Chinese).
[8] 丁小理,邓汝荣,高森田,等.6082铝合金硬质阳极氧化零件耐腐蚀性探讨[J]. 轻合金加工技术,2019,47(6):53-57.
Ding X L, Deng R R, Gao S T, et al. Discussion on corrosion resistance of hard-anodized parts of 6082 aluminum alloy[J]. Light Alloy Fabrication Technology, 2019, 47(6):53-57 (in Chinese).
[9] 彭蓉,杨武霖,符立才,等.低孔隙率阳极氧化铝膜的制备及其高绝缘特性[J]. 中国有色金属学报,2018,28(5):964-970.
Peng R, Yang W L, Fu L C, et al. Preparation of anodic alumina films with low porosity and high insulation property[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(5):964-970 (in Chinese).
[10] Zhang J, Yu S R, Zhu G, et al.Fabrication of superhydrophobic surface on aluminum alloy 6061 by a facile and effective anodic oxidation method[J]. Surface and Coatings Technology, 2019(380): 125078-125113.
[11] 陈文举.7050铝合金硬质阳极氧化工艺研究[J]. 装备制造技术, 2018(11):168-170.
Chen W J. Study on hard anodizing process of 7050 aluminum alloy[J]. Equipment Manufacturing Technology, 2018(11):168-170 (in Chinese).
[12] Gao P H, Chen B Y, Wang W, et al. Simultaneous increase of friction coefficient and wear resistance through HVOF sprayed WC-(nano WC-Co)[J]. Surface and Coatings Technology, 2019(363):379-389.
[13] Wei S B, Pei X H, Shi B R, et al. Wear resistance and anti-friction of expansion cone with hard coating[J]. Petroleum Exploration and Development, 2016, 43(2): 326-331 (in Chinese).
[14] 董海英,胡丽娟,梁婉怡,等.稀土Ce对316L不锈钢耐腐蚀性能的影响[J]. 腐蚀科学与防护技术,2018,30(5):489-495.
Dong H Y, Hu L J, Liang W Y, et al. Effect of rare earth element Ce on corrosion resistance of 316L stainless steel[J]. Corrosion Science and Protection Technology, 2018, 30(5):489-495 (in Chinese).
[15] 张心华,周仲康,徐群杰,等.富镍导电涂层在模拟海水中的耐蚀性能研究[J]. 中国腐蚀与防护学报,2017,37(2):189-194.
Zhang X H, Zhou Z K, Xu Q J, et al. Anti-corrosion performance of nickel-rich conductive coatings in simulated seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2017,37(2):189-194 (in Chinese).
相似文献/References:
[1]张 奇,马 勤*.镁锂合金表面处理技术的研究进展[J].电镀与精饰,2021,(6):41.[doi:10.3969/j.issn.1001-3849.2021.06.009]
ZHANG Qi,MA Qin*.Research Progress on Surface Treatment Technology of Magnesium-Lithium Alloy[J].Plating & Finishing,2021,(12):41.[doi:10.3969/j.issn.1001-3849.2021.06.009]
[2]王薇薇.稀土铈对建筑铝材表面阳极氧化膜腐蚀防护性能的影响?/div>[J].电镀与精饰,2022,(11):59.[doi:10.3969/j.issn.1001-3849.2022.11.011]
WANG Weiwei.Effect of Rare Earth Cerium on Corrosion Protection of Anodic Oxidation Film on Surface of Construction Aluminum[J].Plating & Finishing,2022,(12):59.[doi:10.3969/j.issn.1001-3849.2022.11.011]
[3]邓凌峰,黄 超,韩 靓 *,等. 浅谈船舶热镀锌表面处理的质量控制 [J].电镀与精饰,2023,(10):68.[doi:10.3969/j.issn.1001-3849.2023.10.011]
Deng Lingfeng,Huang Chao,Han Liang *,et al.Quality control of hot-dip galvanized surface treatment of ships[J].Plating & Finishing,2023,(12):68.[doi:10.3969/j.issn.1001-3849.2023.10.011]
[4]师玉英,张胜宝,张鹏远*,等. 全流程辅助设备、安全环保设施在表面处理自动生产线 建设应用 [J].电镀与精饰,2023,(10):73.[doi:10.3969/j.issn.1001-3849.2023.10.012]
Shi Yuying,Zhang Shengbao,Zhang Pengyuan*,et al.Application of whole process auxiliary equipment and safety and environmental protection facilities in the automatic production line of surface treatment[J].Plating & Finishing,2023,(12):73.[doi:10.3969/j.issn.1001-3849.2023.10.012]
[5]郑家翀,何 为,陈先明,等.镀镍磷金属片表面处理对电镀铜生长状态影响的研究[J].电镀与精饰,2024,(1):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
Zheng Jiachong,He Wei,Chen Xianming,et al.Effect of surface treatment on growth state of electroplating copper for nickel-phosphorus plated metal[J].Plating & Finishing,2024,(12):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
[6]刘艳芬,陈昭怡*.建筑铝材表面复合阳极氧化膜的制备及其性能研究[J].电镀与精饰,2024,(8):83.[doi:10.3969/j.issn.1001-3849.2024.08.013]
Liu Yanfen,Chen Zhaoyi *.Study on preparation and properties of composite anodized film on surface of construction aluminum[J].Plating & Finishing,2024,(12):83.[doi:10.3969/j.issn.1001-3849.2024.08.013]
[7]刘艳芬,陈昭怡.doi: 10.3969/j.issn.1001-3849.2025.04.003封孔处理对建筑铝材复合阳极氧化膜耐蚀性的影响[J].电镀与精饰,2025,(04):7.
Liu Yanfen,Chen Zhaoyi*.Effect of sealing treatment on corrosion resistance of composite anodic oxide film on construction aluminum[J].Plating & Finishing,2025,(12):7.
备注/Memo
收稿日期: 2020-11-07;修回日期: 2020-11-17
作者简介: 张境洁(1987-),硕士,讲师,email:chengde_5535@126.com
基金项目: 河北省高等教育学会课题支撑计划(GJXH2017-185)