YANG Chao *,HAN Qing,WANG Anquan,et al.Effect of AC Interference on Failure Mechanism of Coatings in Near-Neutral Solution[J].Plating & Finishing,2022,(10):9-16.[doi:10.3969/j.issn.1001-3849.2022.10.002]
交流干扰下近中性环境中涂层失效机制研究
- Title:
- Effect of AC Interference on Failure Mechanism of Coatings in Near-Neutral Solution
- Keywords:
- AC interference ; zinc-rich epoxy coating ; electrochemical impedance ; zinc activation ; cathodic protection
- 分类号:
- TE88
- 文献标志码:
- A
- 摘要:
- 为明确交流环境中富锌环氧涂层失效演化的电化学机制,通过电化学实验分析了环氧富锌涂层在近中性环境中的电化学阻抗特征,考虑交流电的影响,研究了涂层的失效演化机理。结果表明:在近中性溶液中,当无交流干扰时,富锌涂层的防护效果依次体现在:涂层本身的物理屏蔽作用、涂层中分布的锌粉的电化学过程和腐蚀产物的堵塞、界面上锌粉的电化学保护作用。而交流电能够抑制涂层中锌颗粒的活化过程,导致溶液能够更快地到达涂层 / 金属界面上,形成 Zn-Fe 原电池,提供阴极保护作用;当涂层内部的锌粉被大量活化,交流电能够加速活化锌颗粒的反应过程,减弱阴极保护作用,但腐蚀产物阻塞扩散通道,增强了涂层的物理屏蔽作用。
- Abstract:
- : To investigate the electrcochemical feature of zinc-rich coating under AC interference , the failure evolution mechanism of zinc-rich coatings in near-neutral environments with/without AC interference voltage were studied by electrochemical experiments , in which the electrochemical impedance characteristics of the coatings were analyzed. The results showed that in near-neutral environments with no AC interference , t he protection of zinc-rich coatings behaved as follows : the physical shielding effect of the coatings , the electrochemical process of zinc distributed in the coatings and the plugging of corrosion products , and electrochemical protection of zinc at the coating/metal interface. However , under the influence of AC voltage , the activation process of zinc was inhibited , so the corrosion medium can reach the coating/metal interface more quickly to form Zn-Fe cathodic protection. When the zinc inside the coatings was activated in large quantities , AC voltage can promote the reaction process of activated zinc , weaking the cathodic protection. However , the corrosion products blocked the diffusion channel to enhance the physical shielding effect of the coating at this time.
参考文献/References:
[1] 王池嘉 . 防腐涂层填料的功能化改性及性能研究 [D]. 大庆 : 东北石油大学 , 2018.
[2] 梁正彦 , 陈玲 , 赵振涌 , 等 . 球状锌粉对无机富锌漆阴极保护性能的影响 [J]. 电镀与精饰 , 2014, 36(9): 9-13+26.
[3] 赵书彦 , 童鑫红 , 刘福春 , 等 . 环氧富锌涂层防腐蚀性能研究 [J]. 中国腐蚀与防护学报 , 2019, 39(6): 563-570.
[4] Schaefer K, Miszczyk A. Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc [J]. Corrosion Science, 2013, 66(1): 380-391.
[5] Shreepathi S, Bajaj P, Mallik B P. Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism [J]. Electrochimica Acta, 2010, 55(18): 5129-5134.
[6] Park S M, Shon M Y. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1258-1264.
[7] 曹祥康 . 石墨烯纳米片 / 环氧富锌复合涂层防腐性能及机理研究 [D]. 武汉 : 武汉科技大学 , 2019.
[8] 张伟 . 干湿交替环境中有机涂层失效过程的研究 [D]. 青岛 : 中国海洋大学 , 2010.
[9] 孙塬 . 2024-t6 铝合金表面镍 / 氧化石墨烯涂层的腐蚀和磨损性能研究 [D]. 北京 : 北京石油化工学院 , 2019.
[10] Liu B, Fang Z G, Wang H B, et al. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment[J]. Progress in Organic Coatings, 2013, 76: 1814-1818.
[11] Gergely A, Pfeifer E, Bertóti I, et al. Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole[J]. Corrosion Science, 2011, 53(11): 3486-3499.
[12] Jeon H, Park J, Shon M. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes[J]. Journal of Industrial and Engineering Chemistry, 2013, 19: 849-853.
[13] Zhu C, Xie R, Xue J, et al. Studies of the impedance models and water transport behaviors of cathodically polarized coating[J]. Electrochimica Acta, 2011, 56(16): 5828-5835.
[14] Abreu C M, Izquierdo M, Keddam M, et al. Electrochemical behaviour of zinc-rich epoxy paints in 3 % NaCl solution[J]. Electrochimica Acta, 1996, 41(15): 2405-2415.
[15] 徐龙 . 钢基材表面冷涂锌涂层的防腐蚀性能和机理研究 [D]. 合肥 : 中国科学技术大学 , 2019.
[16] 姜洁 , 许甜 , 刘婧 , 等 . 交流干扰下碱性环境中富锌环氧涂层失效机制研究 [J]. 装备环境工程 , 2021, 18(7):99-106.
[17] Hammer P, Dos Santos F C, Cerrutti B M, et al. Highly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings[J]. Journal of Sol-Gel Science and Technology, 2012, 63: 266-274.
[18] Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO 2 fillers epoxy coating under hydrostatic pressure[J]. Electrochimica Acta, 2012, 62: 42-50.
[19] Lin K F, Yeh R J. Moisture absorption behavior of rubber-modified epoxy resins[J]. Journal of Applied Polymer Science, 2002, 86: 3718-3724.
[20] Hayward D, Hollins E, Johncock P, et al. The cure and diffusion of water in halogen containing epoxy/amine thermosets[J]. Polymer, 1997, 38(5): 1151-1168.
[21] Lin Y C, Chen X. Moisture sorption-desorption-resorption characteristics and its effect on the mechanical behavior of the epoxy system[J]. Polymer, 2005, 46: 11994-12003.
[22] McConnell B K, Pethrick R A. Dielectric studies of water absorption and desorption in epoxy resins: Influence of cure process on behavior[J]. Polymer International, 2008, 57(5): 689-699.
备注/Memo
收稿日期: 2020-12-22 修回日期: 2021-01-21 作者简介: 杨超( 1991 —),男,博士,工程师,主要从事金属腐蚀与防护的研究工作。 email : yangchao201001@163.com 基金项目: 中国石油化工股份有限公司胜利油田分公司博士后课题( YKB2114 )?#160