WANG Ruili,ZHANG Xi,DAN Mingxia,et al.Application of Molecular Imprinting Technology in Electroplating Wastewater Treatment[J].Plating & Finishing,2022,(10):80-87.[doi:10.3969/j.issn.1001-3849.2022.10.014]
分子印迹技术在电镀废水处理中的应用
- Title:
- Application of Molecular Imprinting Technology in Electroplating Wastewater Treatment
- 分类号:
- O652
- 文献标志码:
- A
- 摘要:
- 近年来,电镀行业发展迅速,电镀技术被广泛用于机械、轻工、电子等工业领域。然而,电镀废水中的重金属元素给生态环境带来了严重的污染。目前,已经发现多种处理电镀废水的方法,分子印迹技术就是其中之一。本文将简单介绍电镀废水的有害成分和传统处理方法,并且详细综述分子印迹技术在电镀废水中的处理,通过与其他几种处理技术的优缺点进行对比,并对处理电镀废水领域的未来发展进行展望。
- Abstract:
- : In recent years , electroplating technology is widely used in machinery , light industry , electronic and other industrial fields with the development of science and technology. The heavy metal elements contained in electroplating wastewater brought serious pollution to our environment. A lot of work has been done to find ways to treat electroplating wastewater. Among them , molecular imprinting technology ( MIT ) is one of the most promising method. This paper firstly introduces electroplating wastewater and traditional wastewater treatment methods. In addition , a novel electroplating wastewater treatment technology based on MIT is reviewed in detail. This paper also summarizes the advantages and disadvantages of different methods by comparing MIT with other methods. Finally , the future development of electroplating wastewater treatment is prospected.
参考文献/References:
[1] Zhang S C, Ning S Y, Liu H F. Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent[J].Microporous and Mesoporous Materials, 2020, 303, 1387-1811.
[2] 王文星 . 电镀废水处理技术研究现状及趋势 [J]. 电镀与精饰 , 2011, 33(5): 42-46.
[3] 聂锦霞 . 木屑处理含锌电镀废水的研究 [J]. 江西理工大学学报 , 2009, 30 (3): l4-17.
[4] 王亚东 , 张林生 . 电镀废水处理技术的研究进展 [J]. 安全与环境工程 , 2008, 15(3): 69-72.
[5] 王天行 , 刘晓东 , 喻学敏 . 电镀废水处理技术研究现状及评述 [J]. 电镀与涂饰 , 2017, 36(9): 493-500.
[6] 房世宇 . 电镀废水治理与回用技术的研究 [J]. 清洗世界 , 2021, 37(9): 110-111.
[7] 梁智聪 . 电镀废水处理技术研究进展 [J]. 山东化工 , 2021, 50(22): 77-79.
[8] 赵云霞 , 杨子轩 , 毕廷涛 , 等 . 电镀废水处理技术研究现状及展望 [J]. 电镀与涂饰 , 2021, 40(15): 1215-1224.
[9] 石峰 , 丁金友 , 匡泓 , 等 . 智能环保自动化—电镀表面处理设备制造业的现状与展望 [J]. 电镀与精饰 , 2021, 345(12): 38-42.
[10] 贾彦松 , 葛庆 . 沉淀 / 吸附法处理电镀废水中的重金属 [J]. 当代化工 , 2020, 49(10): 2133-2137.
[11] Feng D, Aldrich C, Tan H. Treatment of acid mine water by use of heavy metal precipitation and ion exchange[J]. Minerals Engineering, 2000, 13(6): 623-642.
[12] 王亮 . 电镀铜镍废水化学处理工艺的优化研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2014.
[13] 高天锐 , 蓝卓越 , 吕晋芳 , 等 . 电镀污泥中有价金属综合回收技术研究现状 [J]. 电镀与精饰 ,2021, 344(11): 42-47.
[14] 邱敬贤 , 刘君 , 黄献 . 电化学法处理电镀废水的研究进展 [J]. 电镀与精饰 , 2019, 41(10): 17-21.
[15] 张卫 . 电镀含镍废水处理工艺优化研究 [J]. 电镀与精饰 , 2021, 343(10): 41-45.
[16] 张博 , 李金花 , 周保学 , 等 . 镀镍废水的资源化回收利用 [J]. 电镀与精饰 , 2021, 343(10): 46-50.
[17] Sonal R, Manish V, Vikas K. Review on the treatment of electroplating industry wastewater by electrochemical methods[J]. Materials Today: Proceedings, 2021(47): 1472-1479.
[18] Janssen L J J, Koene L. The role of electrochemistry and electrochemical technology in environmental protection[J]. Chemical, 2002(85): 137-146.
[19] Ca?izares P, Carmona M, Lobato J, et al. Electrodissolution of aluminum electrodes in electrocoagulation processes[J]. Chemical, 2005(44): 4178-4185.
[20] Islam A, Zaidi N, Ahmad H, et al. Amine-functionalized mesoporous polymer as potential sorbent for nickel preconcentration from electroplating wastewater[J]. Environmental Science and Pollution Research, 2015, 22(10): 7716-7725.
[21] 梁智聪 . 电镀废水处理技术研究进展 [J]. 山东化工 , 2021, 50(22): 77-79.
[22] 解强 , 张香兰 , 李兰廷 , 等 . 活性炭孔结构调节 : 理论、方法与实践 [J]. 新型炭材料 , 2005, 20(2): 183-190.
[23] 张条兰 , 杨伟杰 , 王花丽 . 不同织物结构的活性碳纤维对电镀废水处理的研究 [J]. 电镀与精饰 , 2021, 343(10): 59-62.
[24] Cai X C, Zhang X, Zhang D N, et al. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant[J]. Ecotoxicology and Environmental Safety, 2019(181): 472-480.
[25] 计建洪 , 庄惠生 . 多种物化生化组合工艺处理印染电镀混合废水 [J]. 电镀与精饰 , 2021, 343(10): 51-54.
[26] Liu C, Nuria F, Jordi P, et al. A new technology for the treatment of chromium electroplating wastewater based on biosorption[J]. Journal of Water Process Engineering, 2016(11): 143-151.
[27] Wang C, Li T, Yu G, et al. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology[J]. Chemosphere, 2021(284): 131341.
[28] Tamilarasan K, Ushani U, Shri V S, et al. Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production[J]. International Journal of Hydrogen Energy, 2021(6): 1-8.
[29] 李永 , 周文辉 , 杨黄浩 , 等 . 表面分子印迹高分子膜修饰硅胶用于血清中茶碱的固相萃取 [J]. 应用化学 , 2010, 27(1): 102-106.
[30] 刘佳 . 分子印迹整体柱的制备及其性能的研究 [D]. 石家庄 : 河北科技大学 , 2010.
[31] 李明 . 荧光分子印迹材料的制备及其在环境分析中的应用 [D]. 北京 : 中国农业大学 , 2017.
[32] 余静 , 王芮 , 郝旗 , 等 . 磁性 MZF@SiO 2 对水中 Pb( Ⅱ ) 的吸附 [J]. 环境科学学报 , 2018, 38(8): 3099-3107.
[33] Ho Y S, Mckay G. Pseudo-second-order model for sorption processes[J]. Process Biochemistry, 1999, 34: 451-465.
[34] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40: 1361-1403.
[35] Freundlich H M F. Uber die adsorption in Losungen[J]. Zeitschrift für Physikalische Chemie, 1906, 5: 385-470.
[36] Khan A, Badshah S, Airoldi C. Biosorption of some toxic metal ions by chitosan modified with glycidylmethacrylate and diethylenetriamine[J].Chemical Engineering Journal, 2011, 171(1): 159-166.
[37] Huang L, Yuan S, Lv L, et al. Poly(methacrylic acid )‐ grafted chitosan microspheres via surface initiated ATRP for enhanced removal of Cd( Ⅱ ) ions from aqueous solution[J]. Journal of Colloid and Interface Science, 2013, 405: 171-182.
[38] Bekheit M M, Nawar N, Addison A W, et al. Preparation and characterization of chitosan‐ g rafted‐poly(2-amino-4, 5-pentamethylene-thiophene-3-carboxylic acid N-acryloyl-hydrazide)chelating resin for removal of Cu( Ⅱ ), Co( Ⅱ ) and Ni( Ⅱ) metal ions from aqueous solutions[J]. International Journal of Biological Macromolecules, 2011, 48(4): 558-565.
[39] Tirtom V N, Dincer A, Becerik S, et al. Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution[J]. Chemical Engineering Journal, 2012, 197: 379-386.
[40] Ge H, Fan X. Adsorption of Pb 2+ and Cd 2+ onto a novel activated carbon- c hitosan complex[J]. Chemical Engineering & Technology, 2011, 34(10): 1745-1752.
[41] Peng S, Meng H C, Ouyang Y, et al. Nanoporous magnetic cellulose- c hitosan composite microspheres: Preparation, characterization, and application for Cu(II) adsorption[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2106-2113.
[42] Yang H, Yuan B, Lu Y B, et al. Preparation of magnetic chitosan microspheres and its applications in wastewater treatment[J]. Science in China Series B: Chemistry, 2009, 52(3): 249-256.
[43] Wulff G, Liu J Q. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: The role of transition state stabilization[J]. Accounts of Chemical Research, 2012, 45(2): 239-247.
[44] Verheyen E, Schillemans J P, van Wijk M, et al. Challenges for the effective molecular imprinting of proteins[J]. Biomaterials, 2011, 32(11): 3008-30320.
[45] Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications[J]. Chemical Society Review, 2011, 40(5): 2922-2942.
[46] Sun S L, Wang A Q. Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu(II) as template[J]. Separation and Purification Technology, 2006, 49(3): 197-204.
[47] Chen A W, Zeng G M, Chen G Q, et al. Novel thiourea-modified magnetic ion ‐i mprinted chitosan/TiO 2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol[J]. Chemical Engineering Journal, 2012, 191: 85-94.
[48] 王小骥 , 刘威 , 薛腾 , 等 . 选择性吸附 Cd 2 + 的磁性印迹壳聚糖球粒 [J]. 合肥工业大学学 ( 自然科学版 ), 2015(6): 837-841.
[49] 才秀华 , 张炜 . 铅离子印迹聚合物的制备表征及其吸附性能研究 [J]. 化学研究与应用 , 2015, 27(10): 1440-1445.
[50] 尚宏周 , 赵敬东 , 何俊男 , 等 . 黄腐酸基 Cd 2+ 离子印迹聚合物的吸附性能测试 [J]. 化工学报 , 2017, 68(5): 1940-1945.
[51] 安富强 , 高宝娇 , 王学川 , 等 . 硅胶表面铬 ( Ⅲ ) 离子印迹聚胺的吸附特性研究 [J]. 西部皮革 , 2014, 36(23): 42-49.
相似文献/References:
[1]邱敬贤,刘君,黄献.电化学法处理电镀废水的研究进展[J].电镀与精饰,2019,(10):17.[doi:10.3969/j.issn.1001-3849.2019.10.005]
QIU Jingxian,LIU Jun,HUANG Xian.Development on Electrochemical Treatment of Electroplating Wastewater[J].Plating & Finishing,2019,(10):17.[doi:10.3969/j.issn.1001-3849.2019.10.005]
[2]彭丽花,董 佳.电镀废水处理工艺改造的探索与实践[J].电镀与精饰,2020,(4):43.[doi:10.3969/j.issn.1001-3849.2020.04.0100]
PENG Lihua,DONG Jia.Exploration of the Transformation of Electroplating Wastewater Treatment Process[J].Plating & Finishing,2020,(10):43.[doi:10.3969/j.issn.1001-3849.2020.04.0100]
[3]岑雨秋,高文皓*,周建人.电镀废水特征污染物的危害及处理方法研究进展[J].电镀与精饰,2020,(9):31.
CEN Yuqiu,GAO Wenhao*,ZHOU Jianren.Hazards of Characteristic Pollutants in Electroplating Wastewater and Researching Progress on Method of Disposal[J].Plating & Finishing,2020,(10):31.
[4]郭崇武,陈 康.三价铬镀铬废水的处理方法[J].电镀与精饰,2020,(12):43.[doi:10.3969/j.issn.1001-3849.2020.12.0090]
GUO Chongwu,CHEN Kang.Method for Treatment of Trivalent Chromium Cr-Plating Wastewater[J].Plating & Finishing,2020,(10):43.[doi:10.3969/j.issn.1001-3849.2020.12.0090]
[5]计建洪*,庄惠生.多种物化生化组合工艺处理印染电镀混合废水[J].电镀与精饰,2021,(10):51.[doi:10.3969/j.issn.1001-3849.2021.10.010]
JI Jianhong*,ZHUANG Huisheng.Treatment for Printing and Dyeing-Electroplating Mixed Wastewater by a Variety of Physicochemical and Biochemical Combined Processes[J].Plating & Finishing,2021,(10):51.[doi:10.3969/j.issn.1001-3849.2021.10.010]
[6]张条兰*,杨伟杰,王花丽.不同织物结构的活性碳纤维对电镀废水处理的研究[J].电镀与精饰,2021,(10):59.[doi:10.3969/j.issn.1001-3849.2021.10.012]
ZHANG Tiaolan*,YANG Weijie,WANG Huali.Study on the Treatment of Electroplating Wastewater by Activated Carbon Fibers with Different Fabric Structures[J].Plating & Finishing,2021,(10):59.[doi:10.3969/j.issn.1001-3849.2021.10.012]
[7]季宏飞*,李志猛,陈金明,等. 电渗析技术在电镀废水零排放方面的应用研究 [J].电镀与精饰,2023,(9):64.[doi:10.3969/j.issn.1001-3849.2023.09.010]
Ji Hongfei*,Li Zhimeng,Chen Jinming,et al.Application of electrodialysis technology in zero discharge of electroplating wastewater[J].Plating & Finishing,2023,(10):64.[doi:10.3969/j.issn.1001-3849.2023.09.010]
[8]焦贵生*,杜庆新,李小翻,等. 提高电镀硬铬镀层与基体金属结合力的方法 [J].电镀与精饰,2023,(9):69.[doi:10.3969/j.issn.1001-3849.2023.09.010]
Jiao Guisheng*,Du Qingxin,Li Xiaofan,et al.Application of electrodialysis technology in zero discharge of electroplating wastewater[J].Plating & Finishing,2023,(10):69.[doi:10.3969/j.issn.1001-3849.2023.09.010]
备注/Memo
收稿日期: 2022-04-10 修回日期: 2022-04-28 作者简介: 王瑞丽( 1999 —),女,本科生(学士),研究方向:化工工艺、材料工程等, email : wangruili2022@163.com * 通信作者: 高镜涵( 1988 —),女,博士,讲师, e mail : gjinghan@tjcu.edu.cn 基金项目: 国家自然科学基金资助项目( 51802222 , 22005219 );天津市国家级大学生创新创业训练计划基金项目( 202010069012 )