Ding Xuhai,Hou Jihao,Wei Qianzhu,et al.Biomimetic coating based on electrodeposited nanowall structure and its anti-corrosion and anti-biofouling in seawater[J].Plating & Finishing,2023,(7):33-42.[doi:10.3969/j.issn.1001-3849.2023.07.005]
电沉积纳米墙仿生结构涂层及其海水防腐防污研究
- Title:
- Biomimetic coating based on electrodeposited nanowall structure and its anti-corrosion and anti-biofouling in seawater
- Keywords:
- biomimetics ; copper ; superhydrophobic coating ; electrodeposition ; marine corrosion ; biofouling ; anti-icing
- 分类号:
- TG174
- 文献标志码:
- A
- 摘要:
- 针对铜的海水腐蚀和生物污损问题,采用一步电化学沉积法在紫铜表面制备了基于纳米墙形貌的超疏水涂层( SHS ),通过将稳定的油相替代 SHS 涂层中不稳定的空气膜,得到超滑涂层( SLIPS )。所制备的 SHS 静态接触角为 165 o ,表现出优良的超疏水性能。在 3.5 wt.% NaCl 水溶液中,裸铜以及 SLIPS 的自腐蚀电流密度分别为 1.08×10 -6 mA/cm 2 和 2.98×10 -9 mA/cm 2 ,表明 SLIPS 具有耐海水腐蚀性能;经过 6 d 浸泡后, SLIPS 的阻抗模值仍比裸铜高,说明该涂层对紫铜具有长效防腐蚀作用。以硅藻作为目标污损生物,在硅藻悬浊液浸泡 3 d 后,裸铜、 SHS 、 SLIPS 表面生物附着密度分别为 4.56×10 5 cells/cm 2 、 4.13×10 4 cells/cm 2 、 3.59×10 3 cells/cm 2 , SLIPS 表面附着的生物量较裸铜表面显著减少,表明 SLIPS 具有良好的防生物污损能力。在裸铜、 SHS 、 SLIPS 表面冰的黏附强度分别为 127 kPa 、 56 kPa 和 19 kPa ,超滑表面与冰的黏附力最小且远低于铜表面,说明超滑表面具有良好的防结冰性能。
- Abstract:
- : Aiming at the problem of seawater corrosion and biofouling of copper , a superhydrophobic coating ( SHS ) based on nanowall morphology was prepared on the surface of copper by one-step electrochemical deposition. By replacing the unstable air film in the SHS coating with a stable oil phase , a slippery liquid-infused porous surface ( SLIPS ) was obtained. The prepared SHS has a static contact angle of 165 o , showing excellent superhydrophobic properties. In 3.5 wt.% NaCl aqueous solution , the self-corrosion current densities of bare copper and SLIPS are 1.08×10 -6 mA /cm 2 and 2.98×10 -9 mA /cm 2 , respectively , indicating that SLIPS has seawater corrosion resistance. After 6 days of immersion , the impedance modulus of SLIPS is still higher than that of bare copper , indicating that the coating has a long-term anti-corrosion effect on copper. The diatom was used as the target fouling organism. After soaking in diatom suspension for 3 days , the bio-adhesion density on the surface of bare copper , SHS and SLIPS was 4.56×10 5 cells/cm 2 , 4.13×10 4 cells/cm 2 and 3.59×10 3 cells/cm 2 , respectively. The biomass attached to the surface of SLIPS was significantly lower than that to the surface of bare copper , indicating that SLIPS has good anti-biofouling ability. The adhesion strength of ice on bare copper , SHS and SLIPS surfaces is 127 kPa , 56 kPa and 19 kPa , respectively. The adhesion force between SLIPS and ice is the smallest and much lower than that of copper surface , indicating that SLIPS has good anti-icing performance.
参考文献/References:
[1] Dwivedi A, Bharti P, Shukla S K. An overview of the polymeric materials that can be used to prevent metal corrosion: A review[J]. Journal of the Turkish Chemical Society Section A: Chemistry, 2021, 8(3): 863-872.
[2] 王曦 . 金属材料的腐蚀与防护方法分析 [J]. 世界有色金属 , 2021(15): 217-218.
[3] Carchen A, Atlar M, Turkmen S, et al. Ship performance monitoring dedicated to biofouling analysis: Development on a small size research catamaran[J]. Applied Ocean Research, 2019, 89: 224-236.
[4] 李辉 , 付磊 , 林莉 , 等 . 金属材料的腐蚀疲劳研究进展 [J]. 热加工工艺 , 2021, 50(6): 7-12.
[5] 苏华光 . 导体铜及铜合金的应用和加工工艺综述 [J]. 电线电缆 , 2022(5): 22-29.
[6] 粟志伟 , 周艳文 , 郭诚 , 等 . 冷喷涂 Cu(Ag) 涂层对 TB10 钛合金的生物污损防护 [J]. 材料保护 , 2022, 55(9): 1-9.
[7] Shinato K W, Zewde A A, Jin Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors[J]. Corrosion Reviews, 2020, 38(2): 101-109.
[8] Lv Y, Liu M. Corrosion and fouling behaviours of copper-based superhydrophobic coating[J]. Surface Engineering, 2019, 35(6): 542-549.
[9] 柯冲 , 李中发 , 朱志平 , 等 . 超疏水涂层的制备及其在金属防腐领域的应用研究进展 [J]. 材料保护 , 2022, 55(2): 145-159.
[10] Sabzi M, Dezfuli S M. Deposition of Al 2 O 3 ceramic film on copper-based heterostructured coatings by aluminizing process: Study of the electrochemical responses and corrosion mechanism of the coating[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 90-95.
[11] Deng Y, Song G. Zheng D,et al. Fabrication and synergistic antibacterial and antifouling effect of an organic/inorganic hybrid coating embedded with nanocomposite Ag@TA-SiO2 particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126085.
[12] Khan M Z, Militky J, Petru M, et al. Recent advances in superhydrophobic surfaces for practical applications: A review[J]. European Polymer Journal, 2022, 111481.
[13] Liu X, Wang P, Zhang D, et al. Atmospheric corrosion protection performance and mechanism of superhydrophobic surface based on coalescence-induced droplet self-jumping behavior[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25438-25450.
[14] 李永富 , 张永君 , 沈先龙 , 等 . 铝合金超疏水涂层浸涂法制备及其耐蚀性能 [J]. 材料保护 , 2022, 55(11): 44-49+55.
[15] Zhang G, Shi Y, Tong B, et al. Exudation behavior and pinning effect of the droplet on slippery liquid-infused porous surfaces(SLIPS)[J]. Surface and Coatings Technology, 2022, 433: 128062.
[16] Xie M, Zhao W, Wu Y. Preventing algae biofilm formation via designing long-term oil storage surfaces for excellent antifouling performance[J]. Applied Surface Science, 2021, 554: 149612.
[17] Zhang M, Yu J, Chen R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with a nti-icing and anti-fouling performances[J]. Journal of Alloys and Compounds, 2019, 803: 51-60.
[18] Ouyang Y, Zhao J, Qiu R, et al. Liquid-infused superhydrophobic dendritic silver matrix: A bio-inspired strategy to prohibit biofouling on titanium[J]. Surface and Coatings Technology, 2019, 367: 148-155.
[19] Kan Y, Liu H, Yang Y, et al. Two birds with one stone: The route from waste printed circuit board electronic trash to multifunctional biomimetic slippery liquid-infused coating[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 233-241.
[20] Tang Y, Yang X, Li Y, et al. Robust micro-nanostructured superhydrophobic surfaces for long-term dropwise condensation [J]. Nano Letters, 2021, 21(22): 9824-9833.
[21] Wei L, Kang Z. Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surface and Coatings Technology, 2014, 253(9): 205-213.
[22] Chaudhury M K, Finlay J A, Chung J Y, et al. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane) (PDMS) model networks[J]. Biofouling, 2005, 21(1): 41-48.
相似文献/References:
[1]张道权*,朱嫣红,傅春燕,等. 紫铜工艺品表面氧化棕色工艺的改进 [J].电镀与精饰,2022,(10):65.[doi:10.3969/j.issn.1001-3849.2022.10.011]
ZHANG Daoquan*,ZHU Yanhong,FU Chunyan,et al.Modification of Oxidized Brown Technology on Red Copper Crafts Surface[J].Plating & Finishing,2022,(7):65.[doi:10.3969/j.issn.1001-3849.2022.10.011]
[2]高 虹*,李学田.一种结构仿生防污涂料的制备[J].电镀与精饰,2024,(7):32.[doi:10.3969/j.issn.1001-3849.2024.07.005]
Gao Hong*,Li Xuetian.Preparation of a structural bionic antifouling coating[J].Plating & Finishing,2024,(7):32.[doi:10.3969/j.issn.1001-3849.2024.07.005]
备注/Memo
收稿日期: 2023-01-16 修回日期: 2023-02-23 作者简介: 丁序海( 1972 —)男,高级工程师,从事恶劣环境中材料的腐蚀防护研究工作, email : 17150262@ceic.com * 通信作者: 于溢禛, email : cyszyyz@163.com 基金项目: 国家自然科学基金资助项目( 52074172 )