Mu Shihui *.Electrodeposition behavior of Co 2+ in deep eutectic ionic liquid of choline chloride-ethylene glycol[J].Plating & Finishing,2023,(8):34-37.[doi:10.3969/j.issn.1001-3849.2023.08.006]
ChCl-EG低共熔型离子液体中Co2+的电沉积机理研究
- Title:
- Electrodeposition behavior of Co 2+ in deep eutectic ionic liquid of choline chloride-ethylene glycol
- 关键词:
- 钴; 氯化胆碱 - 乙二醇; 循环伏安; 电结晶机理
- Keywords:
- Co ; choline chloride-ethylene glycol ; cyclic voltammetry ; electrocrystallization mechanism
- 分类号:
- TG147
- 文献标志码:
- A
- 摘要:
- 通过循环伏安法( CV )与计时电流法( CA )研究了 Co 2+ 在氯化胆碱 - 乙二醇( ChCl-EG )中的电沉积行为及其成核机理。实验结果表明, Co 2+ 在 ChCl-EG 中的氧化还原反应为一步双电子反应。不同扫描速度下的循环伏安数据表明, Co 2+ 在 ChCl-EG 体系中的氧化还原反应为扩散控制下的不可逆反应,此过程传递系数 α 为 0.369 。 Co 2+ 在 ChCl-EG 体系中的电结晶过程符合三维连续成核模型。
- Abstract:
- : The electrodeposition behavior and nucleation mechanism of Co 2+ in choline chloride-ethylene glycol ( ChCl-EG ) were studied by cyclic voltammetry ( CV ) and chronoamperometry ( CA ) . The results show that the redox reaction of Co 2+ in ChCl-EG is a one-step two-electron reaction. CV data at different scanning rates indicate that the redox reaction of Co 2+ in ChCl-EG is irreversible. The transfer coefficient α is 0.369. The electrocrystallization process of Co 2+ in the ChCl-EG conforms to the three-dimensional continuous nucleation model.
参考文献/References:
[1] 谭勇 , 张久凌 , 孙杰 . ChCl-EG 低共熔溶剂体系中镍沉积的电化学行为研究 [J]. 表面技术 , 2018, 47(11): 245-250.
[2] Wilkes J S, Levisky J A, Wilson R A, et al. Dialklimidazolium chloroaluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorganic Chemistry, 1982, 21(3): 1263-1264.
[3] Fuller J, Breda A C, Carlin R T. Ionic liquid – polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids[J]. Journal of Electroanalytical Chemistry, 1998, 459(1): 29-34.
[4] Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 1: 70-71.
[5] 罗龚 , 黎德育 , 袁国辉 , 等 . 金钴合金电沉积的研究现状及发展趋势 [J]. 电镀与涂饰 , 2017, 36(11): 599-603.
[6] 杨培霞 , 安茂忠 , 苏彩娜 , 等 . 离子液体中钴的电沉积行为 [J]. 物理化学学报 , 2008, 24(11): 2032-2036.
[7] Fleischmann M, Thirsk H R. Anodic electrocrystallization[J]. Electrochimica Acta, 1960, 2(1-3): 22-49.
[8] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
[9] 丁佳琪 , 郝建军 , 王薪惠 , 等 . CU 低共熔离子液体中锌沉积的电化学行为研究 [J]. 电镀与精饰 , 2022, 44(11): 24-28.
[10] 赵晶晶 , 刘宝友 , 魏福祥 . 低共熔离子液体的性质及应用研究进展 [J]. 河北工业科技 , 2012, 29(3): 184-189.
[11] 李文若 , 郝建军 , 牟世辉 . 镍钴合金在低共熔溶剂中的共沉积行为 [J]. 中国表面工程 , 2020, 33(2): 57-64.
相似文献/References:
[1]周 正,杨 熙,周晓荣*,等.水热法制备钌钴合金及其电催化析氢性能研究?/div>[J].电镀与精饰,2022,(11):35.[doi:10.3969/j.issn.1001-3849.2022.11.007]
ZHOU Zheng,YANG Xi,ZHOU Xiaorong*,et al.Study on the Preparation of Ruthenium-Cobalt Alloy by Hydrothermal Method and Its Electrocatalysis Performance for Hydrogen Evolution[J].Plating & Finishing,2022,(8):35.[doi:10.3969/j.issn.1001-3849.2022.11.007]
[2]卓健飞,何雨波,汪镇涛,等. Watts型镀钴体系电沉积工艺优化 [J].电镀与精饰,2023,(3):52.[doi:10.3969/j.issn.1001-3849.2023.03.008]
Zhuo Jianfei,He Yubo,Wang Zhentao,et al.Optimization of cobalt electrodeposition process in Watts bath[J].Plating & Finishing,2023,(8):52.[doi:10.3969/j.issn.1001-3849.2023.03.008]
备注/Memo
收稿日期: 2020-09-25 修回日期: 2020-11-09 作者简介: 牟世辉( 1974 ―),女,学士,高级实验师,主要研究方向表面工程以及功能材料, email : shihuimu@163.com?/html>