Chen Yuanyuan,Xu Changlong,Chen Xiudong *,et al.Preparation and lithium storage performance of Co 3 O 4 nanometer hollow sphere electrode[J].Plating & Finishing,2023,(9):95-98.[doi:10.3969/j.issn.1001-3849.2023.09.015]
Co3O4纳米空心球电极的制备及其储锂性能
- Title:
- Preparation and lithium storage performance of Co 3 O 4 nanometer hollow sphere electrode
- Keywords:
- anode material ; lithium-ion batteries ; electrochemical properties ; metal organic frameworks
- 分类号:
- TQ317
- 文献标志码:
- A
- 摘要:
- 采用六水硝酸钴和顺丁烯二酸为原料,以水热法合成前体材料,在空气氛围下进行高温( 600 ℃ 和 700 ℃ )煅烧,得到 Co-Ma-600 和 Co-Ma-700 衍生材料。采用 SEM 和 TEM 考察衍生材料的形貌和尺寸,通过 XRD 研究其结构。将衍生材料 Co-Ma-600 和 Co-Ma-700 作为锂离子电池负极材料,并将其组装成原电池。电化学测试结果表明:钴基金属有机骨架衍生材料 Co-Ma-600 和 Co-Ma-700 均为 Co 3 O 4 , Co-Ma-600 形成了较为稳定的空心纳米球结构。在 0.1 A·g -1 的电流密度下, Co-Ma-600 作为锂离子电池负极材料表现出良好的电化学性能,第一次循环可逆比容量达到 808.7 mAh·g -1 ,经过 100 次循环后可逆比容量达 863.2 mAh·g -1 ,与初始比容量相比略有升高。
- Abstract:
- : The precursor materials were synthesized from cobalt nitrate hexahydrate and maleic acid via the hydrothermal method and calcined at high temperatures ( 600 ℃ and 700 ℃ ) in an air atmosphere to obtain Co-Ma-600 and Co-Ma-700 derivative materials. XRD and SEM/TEM were used to investigate the structure and morphology of the derived materials. Co-Ma-600 and Co-Ma-700 were used as anode materials for lithium-ion batteries and assembled into primary batteries. The results showed that the cobalt-based metal-organic frameworks of Co-Ma-600 and Co-Ma-700 were both Co 3 O 4 , and Co-Ma-600 formed a relatively stable hollow nanosphere. At a current density of 0.1 A·g -1 , Co-Ma-600 exhibited good electrochemical performance as a lithium-ion battery anode material , with a reversible specific capacity of 808.7 mAh·g -1 in the first cycle. After 100 cycles , the reversible specific capacity of Co-Ma-600 reached 863.2 mAh·g -1 , slightly higher than the initial specific capacity.
参考文献/References:
[1] Tang W, Yin X S, Kang S J, et al. Lithium silicide surface enrichment: A solution to lithium metal battery[J]. Advanced Materials, 2018, 30(34): 1801745.
[2] Chen X D, Zhang H, Liu J H, et al. Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges [J]. Energy Storage Materials, 2022, 50: 21-46.
[3] Chen X D, Zhang H, Gao Y, et al. Zinc-ion hybrid supercapacitors: Design strategies, challenges and perspectives [J]. Carbon Neutralization, 2022, 1(2): 159-188.
[4] Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 16013.
[5] Chen X D, Yin X J, Aslam J, et al. Recent progress and design principles for rechargeable lithium organic batteries [J]. Electrochemical Energy Reviews, 2022, 5(4): 12.
[6] Schon T B, Mcallister B T, Li P F, et al. The rise of organic electrode materials for energy storage[J]. Chemical Society Reviews, 2016, 45(22): 6345-6404.
[7] Chen X D, Zhang H, Ci C G, et al. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries [J]. ACS Nano, 2019, 13(3): 3600-3607.
[8] Qi W, Shapter J G, Wu Q, et al. Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives[J]. Journal of Materials Chemistry A, 2017, 5(37): 19521-19540.
[9] Chen X D, Sun W W, Wang Y, Covalent organic frameworks for next-generation batteries[J]. ChemElectroChem, 2020, 7(19): 3905-3926.
[10] Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews, 2015, 115(11): 5159-5223.
[11] Chen X D, Zhang H, Yan P, et al. Bipolar fluorinated covalent triazine framework cathode with high lithium storage and long cycling capability[J]. RSC Advances, 2022, 12(18): 11484-11491.
[12] Zhou L M, Zhang K, Hu Z, et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(6): 1701415.
[13] Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design [J]. Chemical Reviews, 2016, 116(7): 4558-4596.
[14] Li X X, Zheng S S, Jin L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials, 2018, 8(23): 1800716.
[15] Yang Z P, Chen X D, Yan P, et al. Novel metal organic frameworks derived nitrogen-doped porous carbon-covered Co 3 O 4 nanoparticle composites as anode materials for efficient lithium storage [J]. Ionics, 2022, 28(9): 4149-4158.
[16] Li C, Zhang C, Xie J, et al. Ferrocene-based metal-organic framework as a promising cathode in lithium-ion battery[J]. Chemical Engineering Journal 2021, 404: 126463.
[17] Lu Y H, Li J H, Xu Z F, et al. Metal-organic framework derived porous nanostructured Co 3 O 4 as high-performance anode materials for lithium-ion batteries [J]. Journal of Materials 2020, 56(3): 2451-2463.
[18] Chao D, Liang P, Chen Z, et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays [J]. ACS Nano, 2016, 10(11): 10211-10219.
[19] Chen Z, Wu R, Wang H, et al. Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties[J]. Chemical Engineering Journal, 2017, 326: 680-690.
[20] Zhu S, Li Q, Wei Q, et al. NiSe 2 Nanooctahedra as an anode material for high-rate and long-life sodium-ion battery [J]. ACS Applied Materials Interfaces, 2017, 9(1): 311-316.
相似文献/References:
[1]刘志英,李明茂,尹宁康,等.锂离子电池用电解铜箔产业趋势和标准化建议[J].电镀与精饰,2024,(10):73.
Liu Zhiying,Li Mingmao*,Yin Ningkang,et al.Suggestions and standardization suggestions for electrolytic copper foil in lithium-ion battery[J].Plating & Finishing,2024,(9):73.
[2]涂敏,陈息坤.还原氧化石墨烯合成及在锂离子电池中应用[J].电镀与精饰,2024,(12):40.
Tu Min *,Chen Xikun.Synthesis of SnS2/reduced graphene oxide and its application in lithium ion batteries[J].Plating & Finishing,2024,(9):40.
备注/Memo
收稿日期: 2022-10-04 修回日期: 2022-11-08 作者简介: 陈媛媛( 2001 —),女,本科生,主要从事锂离子电池负极材料研究, email : 2294269131@qq.com * 通信作者: 陈修栋( 1989 —),男,博士,副教授, email : chenxiudong_@126.com 基金项目: 国家自然科学基金( 22065017 、 21864015 );江西省自然科学基金( 20224BAB214019 、 20232BAB204024 );江西省教育厅科学基金( GJJ180892 、 GJJ211801 );大学生创新创业计划项目( 202111843004 、 202211843009 )