Yu Xianxian*,Jiang Chuang,Zhang Cuicui.Effect of annealing on the properties of electroplated copper in TSV[J].Plating & Finishing,2024,(10):42-49.
退火对TSV电镀铜膜层性能影响研究
- Title:
- Effect of annealing on the properties of electroplated copper in TSV
- Keywords:
- through-silicon via (TSV); copper electroplating; additives; annealing; defects; chemico-mechanical polishing; reliability
- 分类号:
- TQ153.1
- 文献标志码:
- A
- 摘要:
- 针对硅通孔(TSV)高深宽比微孔电镀填铜后结晶细小,后续制程经历高温过程可能导致晶界间缺陷的问题,对TSV电镀铜膜层退火后性能变化进行了研究。考察了退火温度和升温速率等退火条件对晶粒晶面取向、晶粒大小、晶界间空洞以及杂质含量等膜层性能的影响,确定了较优的退火工艺参数为升温速率10 ℃/min,400 ℃下保温2 h。结果表明:此较优的高温退火条件下,XRD显示主晶面择优取向为Cu(111);SIMS分析电镀铜膜层总杂质含量小于100 mg?kg–1;EBSD结果显示电镀铜平均粒径1.9 μm,晶粒长大较充分,满足工业化应用需求,希望对工业化应用提供参考。
- Abstract:
- In order to solve the problem that the small crystal size after copper filling in through-silicon via (TSV) high aspect ratio via microhole electroplating, which may lead to grain boundary defects after high temperature process, the properties of TSV electroplated copper film after annealing were studied. The effects of annealing conditions such as annealing temperature and heating rate on the grain plane orientation, grain size, grain boundary micro void, and impurity content of the film were investigated. The optimal annealing process parameters were determined to be a heating rate of 10 ℃/min and a holding time of 2 h at 400 ℃. The results indicate that under these optimal high-temperature annealing conditions, XRD results show that the preferred orientation of the main crystal plane is Cu (111). SIMS analysis shows that the total impurity content of the electroplated copper film is less than 100 mg?kg–1. EBSD results show that the average particle size of electroplated copper is 1.9 μm. The grain growth is sufficient to meet the needs of industrial applications, which would provide reference for industrial applications
参考文献/References:
[1].Josell D, Wheeler D, Moffat T P, et al. Modeling extreme bottom-up filling of through silicon vias[J]. Journal of the Electrochemical Society, 2012, 159(10): 570-576.
[2].Shen W W, Chen K N. Three-dimensional integrated circuit (3D IC) key technology: Through-Silicon Via (TSV) [J]. Nanoscale Research Letters, 2017, 12: 1-9.
[3].Wang F L, Zeng P, Wang Y, et al. High-speed and high-quality TSV filling with the direct ultrasonic agitation for copper electro-deposition[J]. Microelectronic Engineering, 2017, 180(5): 30-34.
[4].Wu H Y, Wang Y, Li Z Y, et al. Investigations of the electrochemical performance and filling effects of additives on electroplating process of TSV[J]. Scientific Reports, 2020, 10(1): 9204.
[5].廖小茹, 李真, 谭柏照, 等. 金属铜电沉积调控及其在芯片制造中的应用[J]. 中国科学, 2023, 53(10): 1889-2007.
[6].谌可馨, 高丽茵, 许增光, 等. 先进封装中硅通孔(TSV)铜互连电镀研究进展[J]. 科技导报, 2023, 5(12) :15-26.
[7].周苗淼, 张雨, 沈喜训, 等. 芯片电镀铜添加剂的研究进展[J]. 电镀与精饰, 2022, 2(6): 60-65.
[8].马盛林, 王燕, 陈路明, 等. TSV电镀铜添加剂及作用机理研究进展[J]. 中国科学, 2023, 53(10): 1891-1905.
[9].孙红旗, 王溯, 于仙仙, 等. 大马士革工艺中电镀铜层杂质对其性能的影响[J]. 电镀与涂饰, 2023, 42(9): 40-44.
[10].赵雪薇. 铜填充硅通孔在热、电条件下的微结构演化及机理研究[D].北京: 北京工业大学, 2019.
[11].Kong L W, Lloyd J R. Thermal induced void growth in through-silicon via[J]. Journal of Micro/Nanolithography, MEMS and MOEMS, 2013, 12(2): 1-6.
[12].Stangl M, Liptak M, Fletcher A, et al. Influence of initial microstructure and impurities on Cu room-temperature recrystallization (selfannealing)[J]. Microelectronic Engineering, 2008, 85 (3): 534-541.
[13].Lee H, Wong S S, Lopatin S D. Correlation of stress and texture evolution during self- and thermal annealing of electroplated Cu films [J]. Journal of Applied Physics, 2003, 93 (7): 3796-3804.
[14].Brongersma S H, Kerr E, Vervoort I, et al. Grain growth, stress, and impurities in electroplated copper [J]. Journal of Materials Research,2002, 17 (3): 582-589.
[15].Jiang T, Im J, Huang R, et al. Through-silicon via stress characteristics and reliability impact on 3D integrated circuits[J]. Mrs Bulletin, 2015, 40(3): 248-256.
[16].陈思. 三维电子封装关键结构TSV-Cu的胀出行为研究[D].北京: 北京工业大学, 2017.
[17].邓琪. 热处理对TSV铜柱凸出现象的影响规律及其内应力状态的解析[D].上海: 上海交通大学, 2018.
[18].李亚东. 退火态硅通孔(TSV)互连结构的热机械可靠性研究[D].北京: 北京工业大学, 2022.
[19].Bayat P, Vogel D, Rodriguez R D, et al. Thermo-mechanical characterization of copper through-silicon vias (Cu-TSVs) using micro-Raman spectroscopy and atomic force microscopy[J]. Microelectronic Engineering, 2015, 137: 101-104.
[20].丁英涛, 陈志伟, 程志强, 等. 退火工艺对于TSV结构热-机械可靠性影响研究[J]. 北京理工大学学报, 2020, 40: 519-525.
相似文献/References:
[1]冀林仙*,王跃峰.多场耦合研究PCB电镀铜[J].电镀与精饰,2022,(11):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
JI Linxian*,WANG Yuefeng.Research on Copper Electrodeposition of PCB Based on Multi-Physics Coupling[J].Plating & Finishing,2022,(10):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
[2]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(10):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[3]郑家翀,何 为,陈先明,等.镀镍磷金属片表面处理对电镀铜生长状态影响的研究[J].电镀与精饰,2024,(1):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
Zheng Jiachong,He Wei,Chen Xianming,et al.Effect of surface treatment on growth state of electroplating copper for nickel-phosphorus plated metal[J].Plating & Finishing,2024,(10):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
[4]刘颖*,邢希瑞,田栋,等.酸性一价铜电镀铜的工艺及能效分析[J].电镀与精饰,2024,(4):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
Liu Ying*,Xing Xirui,Tian Dong,et al.Energy efficiency analysis of copper electroplating employing acidic cuprous solution[J].Plating & Finishing,2024,(10):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
[5]陈 洁,宗高亮,代禹涵,等.巯基吡啶异构体对电镀铜填盲孔的影响研究[J].电镀与精饰,2024,(9):1.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
Chen Jie,Zong Gaoliang,Dai Yuhan,et al.Study on the influence of pyrithione isomers on filling blind holes in electroplated copper[J].Plating & Finishing,2024,(10):1.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
[6]杨彦章,陈志华,钟上彪,等.doi: 10.3969/j.issn.1001-3849.2025.03.0014PEG在电子电镀铜中的作用机制及应用[J].电镀与精饰,2025,(03):96.
Liu Binyun*,Zhan Dongping.The mechanism and application of PEG in electronic electroplating of copper Yang Yanzhang1,2, Chen Zhihua2, Zhong Shangbiao 2,Ye Shaoming3,[J].Plating & Finishing,2025,(10):96.
[7]方 正,韦相福,杨广柱,等.doi: 10.3969/j.issn.1001-3849.2025.03.015盲孔数值仿真电镀铜研究进展[J].电镀与精饰,2025,(03):106.
Hu Xiaoqiang,Chen Dedeng.Advances in numerical simulation of copper electroplating in blind vias Fang Zheng1, Wei Xiangfu1,2, Yang Guangzhu1, Mao Xianchang1,3, Wei Song3*,[J].Plating & Finishing,2025,(10):106.
[8]高晓颖,王浩军,周雁文,等.doi: 10.3969/j.issn.1001-3849.2025.04.007HEDP体系无氰镀铜的工艺参数和性能研究[J].电镀与精饰,2025,(04):42.
Gao Xiaoying,Wang Haojun*,Zhou Yanwen,et al.Research on process parameters and properties of non-cyanide copper plating in HEDP system[J].Plating & Finishing,2025,(10):42.
备注/Memo
TSV电镀过程主要通过添加剂的控制实现超级填充[5-8],不同类型的添加剂通过浓差极化和电化学吸附等方式起作用,难免会在电镀铜层中产生吸附和掺杂,导致镀层中杂质含量增加,影响到镀层性能[9-12]。另外,TSV实际电镀填充时用的电流密度较小,电镀后的铜晶粒也相对细小,处于热力学不稳定的高自由能状态,有自发恢复到低自由能状态的趋势,需要经过高温退火处理,以消除晶界间残余应力和组织缺陷,让晶粒充分重结晶[10-15]。TSV退火是指将电镀填充后的TSV样品加热到一定温度,保持足够时间,然后以适宜速度冷却。退火时电镀铜会经历回复、重结晶、晶粒长大等过程,退火过程中铜晶粒长大的同时也可能会在晶粒间产生空洞缺陷,故需要选择适当的退火工艺,在保证晶粒重结晶长大的同时,减少空洞的产生[15-21]。