Gao Jicheng*,Cheng Jinjing,Zhang Zhe,et al.Innovative experimental design and teaching practice of the effect of the rare earth Ce on the microstructure and properties of Ni-Co coatings[J].Plating & Finishing,2024,(12):129-135.
稀土Ce对Ni-Co镀层组织与性能影响创新实验设计与教学实践
- Title:
- Innovative experimental design and teaching practice of the effect of the rare earth Ce on the microstructure and properties of Ni-Co coatings
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 以电化学沉积在“再制造”领域的应用为背景,设计了稀土Ce对Ni-Co合金镀层微观组织与性能的影响综合电化学实验。以电化学沉积理论为指导,以学生掌握Ni-Co镀层的制备、表征与性能测试方法为目的,以硫酸镍体系为主要原料,制备了Ni-Co合金镀层。利用扫描电子显微镜与能谱分析仪对镀层的微观组织和化学成分进行了表征,利用X射线衍射仪对镀层的相结构进行了分析,利用显微硬度计、摩擦磨损试验机与电化学工作站对镀层的显微硬度、耐磨性与耐蚀性进行了测试。本实验可以提升学生的基本实验技能,同时,实验涉及电化学、材料、机械等多学科交叉融合,在教学实施过程中可以提高学生的创新能力与科研素养。
- Abstract:
- The comprehensive electrochemical experiment of the effect of rare earth Ce on the microstructure and properties of Ni-Co alloy coatings was designed based on the application of electrochemical deposition in the field of “remanufacturing”. Ni-Co alloy coating was prepared with nickel sulfate system as the main raw material for the purpose of students mastering the preparation, characterization and property testing methods of Ni-Co coating under the guidance of electrochemical deposition theory. The microstructure and chemical composition of the coating were characterized by scanning electron microscope and energy dispersive X-ray spectroscopy. The phase structure of the coating was analyzed by X-ray diffraction. The microhardness, wear resistance and corrosion resistance of the coating were tested by microhardness tester, friction and wear testing machine and electrochemical workstation. This experiment could improve students’ basic experimental skills. Meanwhile, the experiment combined multiple subjects of electrochemistry, materials, machinery, which improve students’ innovative ability and scientific research literacy in the process of teaching practice.
参考文献/References:
[1].王海斗, 张文宇, 宋巍. 再制造二十年足迹及发展趋势[J]. 机械工程学报, 2023, 59(20): 80-95.
[2].张泽琳, 魏庆魁, 王蕾, 等. 考虑可再制造性的机械产品设计方案优化方法[J]. 现代制造工程,2023, (12):121-131.
[3].刘仁志. 再制造中的电镀技术[J]. 表面工程与再制造, 2018, 18(1): 19-22.
[4].安志博, 金洙吉, 姜冠楠, 等. 金刚石抛光用镍钨合金镀层的电镀制备工艺[J]. 电镀与精饰, 2023, 45(1): 71-79.
[5].王昱开. 不锈钢工具电镀金刚石工艺研究[J]. 电镀与精饰, 2021, 43(3): 6-9.
[6].崔反东, 高小丽, 冯宇琴. AZ91D镁合金电镀Al-Zn复合镀层及耐蚀性研究[J]. 电镀与精饰, 2022, 44(3): 12-17.
[7].谭铮. 电镀合金技术在汽车生产中的应用—评《电镀合金技术及应用》[J]. 电镀与精饰, 2021, 43(3): 57.
[8].赵军华, 董延. 基于电镀技术的失效机械零件再制造研究进展[J].电镀与环保,2015,35(4):4-6.
[9].吕春雷,芮灿.电镀技术在机械备件修复中的生产应用[J].电镀与精饰,2023,45(4):106-110.
[10].阮增雄. 电沉积制备Ni-Co合金镀层及其耐腐蚀性能研究[D]. 咸阳: 西北农林科技大学, 2023.
[11].朱龙章, 高玉香. 稀土(La,Nd,Sm)化合物对电沉积Ni-Co合金的影响[J]. 上海师范大学学报(自然科学版), 2002,(4): 33-37.
[12].李佳梅, 葛文, 张飞霞, 等. 稀土Ce含量对双脉冲电沉积Ni-Co合金层结构及耐蚀性的影响[J]. 材料保护, 2015, 48(11): 8-10.
[13].彭云超, 马凯军, 贾犇, 等. 电镀NiCoCe合金层的制备及耐蚀性能研究[J]. 材料保护, 2021, 54(8): 101-108.
[14].李聪玮, 杜双明, 曾志琳, 等. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J].中国腐蚀与防护学报, 2020, 40(5): 439-447.
[15].徐仰涛, 王雅宁. 稀土对金属电沉积过程及沉积层性能影响的研究现状[J]. 中国有色金属学报, 2021, 31(5): 1310-1319.
[16].肖友军, 王灵锋, 周磊. 硫酸高铈改善Ni-Co合金电镀层性能的机理[J]. 材料保护, 2010, 43(6): 5-8.
[17].胡春玲, 魏菊, 朱开宪. 稀土铈对电沉积镍-钴-钨三元合金性能的影响[J]. 电镀与环保, 2018, 38(2): 8-10.
[18].陈煜林. 电沉积镍钴合金的制备与性能研究[D]. 昆明: 昆明理工大学, 2024.
[19].Wang G X, Li D D, Zuo Y, et al. The improvement of hardness and corrosion resistance of electroplated Pd-Ni film on 316L stainless steel by CeCl3[J]. Coatings, 2020, 10(2): 161-171.