Qing Qixin*,Huang Yanguang,Wang Chen,et al.Effect of chloride ions on copper electrodeposition in local electrochemistry[J].Plating & Finishing,2024,(7):91-98.[doi:10.3969/j.issn.1001-3849.2024.07.014]
氯离子在局部电化学中对铜电沉积的影响
- Title:
- Effect of chloride ions on copper electrodeposition in local electrochemistry
- Keywords:
- local electrochemical deposition LECD ; Cl - concentration ; copper microcolumn ; morphology ; deposition rate
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 局部电化学沉积( LECD )制造金属微结构是一种非常便捷和经济的方法。用 20 μ m 直径微阳极来研究 Cl - 浓度在 LECD 上对铜微柱形貌、直径、沉积速率等的影响。 Cl - 使铜离子先还原为亚铜离子,然后再还原成铜,能促使铜微柱沉积速率提高,进而可调控铜微柱形貌质量,提高沉积效率。在铜还原过程中氯化亚铜会在铜微柱表面形成,并发生歧化反应,使铜微柱表面产生孔隙、粗糙形貌,而过高 Cl - 浓度会形成氯化亚铜结晶,增大铜微柱直径。受高电流密度和高氢离子浓度影响,在铜微柱内部无法沉淀氯化亚铜。 Cl - 浓度所对铜微柱形貌、沉积速率等的影响为 Cl - 与其它添加剂在 LECD 上协同应用提供了参考。
- Abstract:
- : Local electrochemical deposition ( LECD ) is a very convenient and economical method for manufacturing metal microstructures. The effects of Cl - concentration on the morphology , diameter and deposition rate of copper microcolumn on LECD are studied by a microanode with a diameter of 20 μ m. Cl - causes the reduction process of copper ions to become cuprous ions , and then to be reduced to copper. Cl - has the effect of accelerating the deposition of copper microcolumns , thereby regulating the morphology and improving deposition efficiency of copper microcolumn. It also causes the cuprous chloride to cover the surface of copper microcolumn. Due to the disproportion reaction of cuprous chloride , pores and rough morphology are formed on the surface , and the cuprous chloride crystals also increase the diameter of copper microcolumn. Because of high current density and high hydrogen ion concentration , cuprous chloride cannot be formed inside the copper microcolumn. The effect of Cl - concentration on the morphology and deposition rate of copper microcolumn provides a reference for the synergistic application of Cl - and other additives on LECD.
参考文献/References:
[1] Madden J, Lafontaine S, Hunter I. Fabrication by electrodeposition: building 3D structures and polymer actuators[C]. International Symposium on MICRO Machine and Human Science. 1995.
[2] Seol S, Kim J, Je J, et al. Three-dimensional (3D) polypyrrole microstructures with high aspect ratios fabricated by localized electropolymerization[J]. Macromolecules, 2008, 41(9): 3071-3074.
[3] Madden J, Hunter I. Three-dimensional microfabrication by localized electrochemical deposition[J]. Journal of Microelectromechanical Systems, 1996, 5(1): 24-32.
[4] Pané S, Panagiotopoulou V, Fusco S, et al. The effect of saccharine on the localized electrochemicaldeposition of Cu-rich Cu-Ni microcolumns[J]. Electrochemistry Communications, 2011, 13(9): 973-976.
[5] Said R. Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling[J]. Nanotechnology, 2004, 14(5): 523-531.
[6] Wang F, Xiao H, He H. Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns[J]. Science Report, 2016, 6(1): 26270.
[7] Lin J, Chang T, Yang J, et al. Localized electrochemical deposition of micrometer copper columns by pulse plating[J]. Electrochimica Acta, 2010, 55(6): 1888-1894.
[8] Wang F, Sun J, Liu D, et al. Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition[J]. Journal of the Electrochemical Society, 2017, 164(6): D297-D301.
[9] Wang F, Bian H, Xiao Y. Fabrication of microsized copper columns using localized electrochemical deposition with a 20 μ m diameter micro anode[J]. ECS Journal of Solid State Science & Technology, 2019, 8(4): P223-P227.
[10] Yeo S, Choo J, Sim K. On the effects of ultrasonic vibrations on localized electrochemical deposition[J]. Journal of Micromechanics & Microengineering, 2002, 12(3): 271-279.
[11] Ciou Y, Hwang Y, Lin J. Fabrication of two-dimensional microstructures by using micro anode guided electroplating with real- time image processing[J]. ECS Journal of Solid State Science and Technology, 2014, 3(7): 268-P271.
[12] Lin J, Chang T, Yang J, et al. Fabrication of a micrometer Ni-Cu alloy column coupled with a Cu microcolumn for thermal measurement[J]. Journal of Micromechanics and Microengineering, 2009, 19(1): 015030.
[13] Habib M, Gan S, Rahman M. Fabrication of complex shape electrodes by localized electrochemical deposition [J]. Journal of Materials Processing Technology, 2009, 209(9): 4453-4458.
[14] Wang F, Li Y, He H, et al. Effect of bis-(3-sulfopropyl) disulfide and chloride ions on the localized electrochemical deposition of copper microstructures[J]. Journal of the Electrochemical Society, 2017, 164(7): D419-D424.
[15] El-Giar E, Said R, Bridges G, et al. Localized electrochemical deposition of copper microstructures[J]. Journal of The Electrochemical Society, 2000, 147(2): 586-591.
[16] Yang J, Lin J, Chang T, et al. Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process[J]. Journal of Micromechanics and Microengineering, 2009, 19(2): 025015.
[17] Nagy Z. Chloride ion catalysis of the copper deposition reaction[J]. Journal of The Electrochemical Society, 1995, 142(6): 56-60.
[18] Xu Jiayuan, Yang Fangzu, Xie Zhaoxiong, et al. The investigation of the effect of Cl - ions on copper plating in acidic baths[J]. Journal of Xiamen University: Natural Science, 1994, 33(5): 647-651.
备注/Memo
收稿日期: 2023-10-14 修回日期: 2023-11-06 作者简介: 卿启新( 1981.8 —),男,博士,讲师, email : 616096609@qq.com 基金项目: 惯性测量阵列常值误差在线补偿方法研究(国家自然科学基金 62363001 );局部电化学电沉积制造金属三维微结构(广西科技大学博士基金 22Z30 )。