Chao Shuang,Cao Jingjing,*,et al.The influence of micro/nano SiCP particle size and concentration on the structure and properties of electroless Ni-P-SiC P composite coatings[J].Plating & Finishing,2025,(01):81-90.
doi: 10.3969/j.issn.1001-3849.2025.01.013 微纳SiCP粒度和浓度对化学镀Ni-P-SiCP
- Title:
- The influence of micro/nano SiCP particle size and concentration on the structure and properties of electroless Ni-P-SiC P composite coatings
- 关键词:
- 42CrMo钢; 微纳SiC微粒; Ni-P-SiCP复合镀层; 耐蚀性; 沉积机理
- Keywords:
- 42CrMo steel; micro/nano SiC particles; Ni-P- SiCP composite coating; corrosion resistance; deposition mechanism
- 分类号:
- TG178
- 文献标志码:
- A
- 摘要:
- 以微纳SiC为第二相微粒,在42CrMo钢表面制备Ni-P-SiCP复合镀层,研究了微纳SiCP的粒度(5 μm和0.5 μm)和浓度对化学镀Ni-P-SiCP复合镀层沉积速率、表面形貌、成分、显微硬度和耐蚀性的影响,并结合Ni-P-SiCP复合镀层截面形貌和成分分布,探讨了Ni-P-SiCP复合镀层的沉积机理。结果表明:SiCP的添加抑制了化学沉积反应,导致Ni-P-SiCP复合镀层的沉积速率下降,但0.5 μm的SiCP对沉积反应的抑制作用较弱,形成的Ni-P-SiCP-0.5复合镀层表面的胞状物尺寸更均匀、平整、致密,随SiCP浓度的增加,Ni-P-SiCP复合镀层的沉积速率下降,复合镀层表面的Ni∶P增加;当SiCP浓度7 g/L时,复合镀层表面的SiCP发生堆积或团聚。当SiCP浓度为5 g/L时,Ni-P-SiCP-0.5复合镀层的显微硬度最大,约753 HV,耐蚀性也最优,自腐蚀电位为?0.363 V。浸润处理后的SiC微粒表面带负电,吸附大量的Ni2+,向基底表面运动,与Ni、P均匀的共沉积到基底表面,共沉积的SiCP在复合镀层中具有弥散强化和惰性物理屏障的作用,使Ni-P-SiCP复合镀层具有更高的硬度和更优的耐蚀性。
- Abstract:
- A Ni-P-SiCP composite coating was prepared on the surface of 42CrMo steel using micro/nano SiC as the second-phase particles. The influence of micro/nano SiC? particle size (5 μm and 0.5 μm) and concentration on the deposition rate, surface morphology, composition, microhardness, and corrosion resistance of electroless Ni-P-SiCP composite coatings was investigated. Additionally, by combining the cross-sectional morphology and composition distribution of Ni-P-SiC P composite coatings, the deposition mechanism of Ni-P-SiC P composite coatings was explored. The results show that the addition of SiC P inhibits the chemical deposition reaction, resulting in a decrease in the deposition rate of Ni-P-SiCP composite coating. However, 0.5 μm SiC P has a weak inhibitory effect on the deposition reaction, and the cell size on the surface of the formed Ni-P-SiC P-0.5 composite coating is more uniform, flat and dense. With the increase of SiC P concentration, the deposition rate of Ni-P-SiC P composite coating decreases, and the Ni∶P on the surface of the composite coating increases. When the concentration of SiC P is 7 g/L, the SiC P on the surface of the composite coating accumulates or agglomerates. When the concentration of SiC P is 5 g/L, the microhardness of Ni-P-SiC P-0.5 composite coating is the largest, about 753 HV, and the corrosion resistance is also the best, the self-corrosion potential is ?0.363 V. The surface of SiC particles after infiltration treatment is negatively charged, and a large amount of Ni 2+ is adsorbed and moves to the surface of the substrate. The SiC particles are uniformly co-deposited with Ni and P to the surface of the substrate. The co-deposited SiC P has the effect of dispersion strengthening and inert physical barrier in the composite coating, which makes the Ni-P-SiC P composite coating have higher hardness and better corrosion resistance.
参考文献/References:
[1].Liu Y, Cheng L, Zhang L, et al. Microstructure and properties of particle reinforced silicon carbide and silicon nitride ceramic matrix composites prepared by chemical vapor infiltration[J]. Materials Science and Engineering: A, 2008, 475(1-2): 217-223.
[2].方敏, 蒋理帅祎, 刘富强, 等. 镁合金表面热喷涂WC-10Co-4Cr粒子沉积及分布特性[J]. 科学技术与工程, 2024, 24(8): 3186-3192.
[3].刘元海, 尹凤雷, 慕仙莲, 等. 铜表面镍/银/铑复合镀层的制备及其耐腐蚀性研究[J]. 电镀与精饰, 2024, 46(1): 79-83.
[4].马安博, 李婷. 脉冲激光重熔对YSZ涂层微观结构的影响[J]. 电镀与精饰, 2018, 40(4): 8-11.
[5].丁艳红. 离子气相沉积镀铝技术研究[J]. 电镀与精饰, 2016, 38(12): 6-11.
[6].Kumar K, Bansal V, Sharma S, et al. Microhardness and wear resistance of alkaline electroless Ni-P/Ni-P-ZnO nanocomposite platings[J]. Materials Today: Proceedings, 2023, 80: 1219-1224.
[7].Chen B, Yan F, Guo J, et al. Attractive effects of Re on electroless Ni-P-TiN nanocomposite coating[J]. Applied Surface Science, 2021, 565: 150472.
[8].黄晓梅, 向旭. SiO2微粒对化学镀Ni-P-SiO2复合镀层性能的影响[J]. 电镀与环保, 2020, 40(3): 35-37.
[9].宿辉, 张春波, 王作凯, 等. 镁合金表面化学镀镍前处理工艺的研究进展[J]. 表面技术, 2017, 46(9): 87-94.
[10].张立香, 卢建树. 镁合金化学镀镍技术进展[J]. 腐蚀科学与防护技术, 2013, 25(4): 334-338.
[11].姚伦芳, 杨强, 刘定富. 纳米Al2O3颗粒掺杂对化学镀Ni-Cu-P镀层耐蚀性的影响[J]. 电镀与精饰, 2023, 45(11): 27-31.
[12].Zamani S M, Hassanzadeh-Tabrizi S A, Sharifi H. Failure analysis of drill pipe: A review[J]. Engineering Failure Analysis, 2016, 59: 605-623.
[13].宋振兴, 姚素薇, 王宏智, 等. 化学镀(Ni-P)-SiC纳米复合镀层性能研究[J]. 电镀与精饰, 2014, 36(12): 1-5.
[14].崔凯, 任伟和. Cr12MoV模具钢化学镀Ni-W-P/PTFE复合镀层及耐磨性能研究[J]. 电镀与精饰, 2023, 45(10): 32-39.
[15].Zhang B, Zhang Q, Zhang Z, et al. Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 153-160.
[16].Ghavidel N, Allahkaram S R, Naderi R, et al. Corrosion and wear behavior of an electroless Ni-P/nano-SiC coating on AZ31 Mg alloy obtained through environmentally-friendly conversion coating[J]. Surface and Coatings Technology, 2020, 382: 125156.
[17].Franco M, Sha W, Malinov S, et al. Phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on cast aluminium LM24 alloy substrate[J]. Surface and Coatings Technology, 2013, 235: 755-763.
[18].Franco M, Sha W, Tan V, et al. Insight of the interface of electroless Ni-P/SiC composite coating on aluminium alloy, LM24[J]. Materials & Design, 2015, 82: 248-255.
[19].Baskaran I, Narayanan T S N S, Stephen A. Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni-P deposits[J]. Materials chemistry and physics, 2006, 99(1): 117-126.
[20].Li Y, Bushby A J, Dunstan D J. The Hall-Petch effect as a manifestation of the general size effect[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2190): 20150890.
相似文献/References:
[1]张庆华*,张正旭,赵 琦,等.锰系磷化处理对汽车传动件材料耐腐蚀性能的影响[J].电镀与精饰,2020,(5):38.[doi:10.3969/j.issn.1001-3849.2020.05.0060]
ZHANG Qinghua*,ZHANG Zhengxu,ZHAO Qi.Effect of Manganese Phosphating Treatment on Corrosion Resistance of Materials Used for Automotive Transmission Parts[J].Plating & Finishing,2020,(01):38.[doi:10.3969/j.issn.1001-3849.2020.05.0060]