PDF下载 分享
[1]杨彦章,陈志华,钟上彪,等.doi: 10.3969/j.issn.1001-3849.2025.03.0014PEG在电子电镀铜中的作用机制及应用[J].电镀与精饰,2025,(03):96-105.
 Liu Binyun*,Zhan Dongping.The mechanism and application of PEG in electronic electroplating of copper Yang Yanzhang1,2, Chen Zhihua2, Zhong Shangbiao 2,Ye Shaoming3,[J].Plating & Finishing,2025,(03):96-105.
点击复制

doi: 10.3969/j.issn.1001-3849.2025.03.0014PEG在电子电镀铜中的作用机制及应用

参考文献/References:

[1].Sekar R. Synergistic effect of additives on electrodeposition of copper from cyanide-free electrolytes and its structural and morphological characteristics[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1665-76.
[2].Radoeva M, Monev M, Ivanov I T, et al. Adhesion improvement of electroless copper coatings by polymer additives[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460: 441-7.
[3].李文畅, 盛施展, 吴金洪, 等. 表面活性剂对Ni-W-P化学镀层沉积行为及性能的影响[J]. 电镀与精饰, 2024, 46(1): 1-8.
[4].邹忠利, 李洋, 单玺畅, 等. 表面活性剂对电镀锌-铟合金性能的影响[J]. 表面技术, 2024, (7), 35-40.
[5].D’Souza A A, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications[J]. Expert opinion on drug delivery, 2016, 13(9): 1257-1275.
[6].Ensing B, Tiwari A, Tros M, et al. On the origin of the extremely different solubilities of polyethers in water[J]. Nature communications, 2019, 10(1): 2893.
[7].Pasquali R C, Taurozzi M P, Bregni C. Some considerations about the hydrophilic–lipophilic balance system[J]. International Journal of Pharmaceutics, 2008, 356(1): 44-51.
[8].Alcantar N A, Aydil E S, Israelachvili J N. Polyethylene glycol-coated biocompatible surfaces[J]. Journal of Biomedical Materials Research, 2000, 51(3): 343-51.
[9].Ulbricht J, Jordan R, Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly (2-oxazoline) s[J]. Biomaterials, 2014, 35(17): 4848-61.
[10].Fruijtier-P?lloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products[J]. Toxicology, 2005, 214(1-2): 1-38.
[11].Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-23.
[12].Ein-Eli Y, Auinat M, Starosvetsky D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors[J]. Journal of power sources, 2003, 114(2): 330-337.
[13].Dow W P, Yen M Y, Lin W B, et al. Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating[J]. Journal of the Electrochemical Society, 2005, 152(11): C769.
[14].Yin L, Liu Z, Yang Z, et al. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for PCB interconnects[J]. Transactions of the IMF, 2010, 88(3): 149-53.
[15].Ko S-L, Lin J-Y, Wang Y-Y, et al. Effect of the molecular weight of polyethylene glycol as single additive in copper deposition for interconnect metallization[J]. Thin Solid Films, 2008, 516(15): 5046-5051.
[16].Wang F, Zhou K, Zhang Q, et al. Effect of molecular weight and concentration of polyethylene glycol on through-silicon via filling by copper[J]. Microelectronic Engineering, 2019, 215: 111003.
[17].Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated Cu filling by electrochemical method[J]. Transactions of the IMF, 2015, 93(4): 190-195.
[18].Chrzanowska A, Mroczka R. Influence of chloride anions and polyethylene glycol on the morphology of electrodeposited copper layers[J]. Electrochimica Acta, 2012, 78: 316-323.
[19].Lin C C, Yen C H, Lin S C, et al. Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils[J]. Journal of the Electrochemical Society, 2017, 164(13): D810.
[20].Xiao N, Pang K, Wang Z, et al. Structural effect of polymers on their microvia filling performance as suppressors during the copper electroplating[J]. International Journal of Electrochemical Science, 2017, 12(2): 1453-1462.
[21].Ryan K, Dunn K, Van Eisden J, et al. Properties of PEG, PPG and their copolymers: influence on copper filling of damascene interconnects[J]. Journal of the Electrochemical Society, 2013, 160(12): D3186.
[22].Xiao N, Li N, Cui G, et al. Triblock copolymers as suppressors for microvia filling via copper electroplating[J]. Journal of the Electrochemical Society, 2013, 160(4): D188.
[23].Zhang Y, An M, Yang P, et al. Electrochemical behavior of through-hole electrodeposition inhibitor EO-PO under periodic pulse reverse[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130238.
[24].Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. Journal of the Electrochemical Society, 2008, 155(10): D632.
[25].Dong M, Zhang Y, Hang T, et al. Structural effect of inhibitors on adsorption and desorption behaviors during copper electroplating for through-silicon vias[J]. Electrochimica Acta, 2021, 372: 137907.
[26].Zhang Y, Chen J, Cheng Y, et al. Novel suppressor for damascene copper electrodeposition: thioether-modified polyether with enhanced adsorption through an adjustable synthesis strategy[J]. Electrochimica Acta, 2024: 144912.
[27].Hai N T, Janser F, Luedi N, et al. Tailored design of suppressor additives for copper plating by combining functionalities[J]. ECS Electrochemistry Letters, 2013, 2(11): D52.
[28].Mendez J, Akolkar R, Landau U. Polyether suppressors enabling copper metallization of high aspect ratio interconnects[J]. Journal of the Electrochemical Society, 2009, 156(11): D474.
[29].Kang J, Kim C M, Yu D Y, et al. Octylphenol ethoxylate surfactant as a suppressor in copper electrodeposition[J]. Transactions of the IMF, 2019, 97(1): 22-27.
[30].Li L L, Yeh H C. Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14358-14367.
[31].Han C, Zhai Y, Chen Y, et al. Alkyl-terminated PEG suppressors for copper electroplating and their hydrophilic and hydrophobic properties[J]. Surface and Coatings Technology, 2024, 484: 130848.
[32].李强. 添加剂PEG, Cl, SPS作用下的铜电结晶过程研究[D]. 重庆: 重庆大学, 2007.
[33].Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984, 52(4): 218-223.
[34].Hill M, Rogers G. Polyethylene glycol in copper electrodeposition onto a rotating disk electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 86(1): 179-188.
[35].Hung C C, Lee W H, Wang Y L, et al. Investigation of the suppression effect of polyethylene glycol on copper electroplating by electrochemical impedance spectroscopy[J]. Journal of Vacuum Science & Technology A, 2008, 26(5): 1109-1114.
[36].Bonou L, Eyraud M, Denoyel R, et al. Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements[J]. Electrochimica Acta, 2002, 47(26): 4139-4148.
[37].Hebert K R, Adhikari S, Houser J E. Chemical mechanism of suppression of copper electrodeposition by poly (ethylene glycol)[J]. Journal of the Electrochemical Society, 2005, 152(5): C324.
[38].Kelly J J, West A C. Copper deposition in the presence of polyethylene glycol: II. electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 1998, 145(10): 3477.
[39].Healy J P, Pletcher D, Goodenough M. The chemistry of the additives in an acid copper electroplating bath: part I. polyethylene glycol and chloride ion[J]. Journal of Electroanalytical Chemistry, 1992, 338(1): 155-165.
[40].Kelly J J, West A C. Copper deposition in the presence of polyethylene glycol: I. quartz crystal microbalance study[J]. Journal of the Electrochemical Society, 1998, 145(10): 3472.
[41].Willey M J, West A C. Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition[J]. Journal of the Electrochemical Society, 2006, 153(10): C728.
[42].Mroczka R, S?odkowska A. The properties of the polyethylene glycol complex PEG(Na +)(Cu+) on the copper electrodeposited layer by time-of-flight secondary-ion mass spectrometry. the new insights[J]. Electrochimica Acta, 2020, 339: 135931.
[43].Manu R, Jayakrishnan S. Influence of polymer additive molecular weight on surface and microstructural characteristics of electrodeposited copper[J]. Bulletin of Materials Science, 2011, 34: 347-356.
[44].Petri M, Kolb D M, Memmert U, et al. Adsorption of PEG on Au(111) single-crystal electrodes and its influence on copper deposition[J]. Journal of the Electrochemical Society, 2004, 151(12): C793.
[45].Lai Z, Wang C, Huang Y, et al. Temperature-dependent inhibition of PEG in acid copper plating: theoretical analysis and experiment evidence[J]. Materials Today Communications, 2020, 24: 100973.
[46].Hebert K R. Analysis of current-potential hysteresis during electrodeposition of copper with additives[J]. Journal of the Electrochemical Society, 2001, 148(11): C726.
[47].Moffat T, Wheeler D, Huber W, et al. Superconformal electrodeposition of copper[J]. Electrochemical and Solid-State Letters, 2001, 4(4): C26.
[48].Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system: I. kinetic measurements: Influence of SPS[J]. Journal of the Electrochemical Society, 2004, 151(4): C262.
[49].Nedumthakady N, Deprospo B, Sharma H, et al. In-situ investigation of organic additive interactions in copper electroplating solutions with surface enhanced Raman spectroscopy (SERS)[C]//IEEE. Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 2019, 89-90.
[50].Mroczka R, S?odkowska A, ?adniak A, et al. Interaction of bis-(sodium-sulfopropyl)-disulfide and polyethylene glycol on the copper electrodeposited layer by time-of-flight secondary-ion mass spectrometry[J]. Molecules, 2023, 28(1): 433.
[51].Willey M J, West A C. SPS adsorption and desorption during copper electrodeposition and its impact on PEG adsorption[J]. Journal of the Electrochemical Society, 2007, 154(3): D156.
[52].Tan M, Guymon C, Wheeler D R, et al. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154(2): D78.
[53].Walker M L, Richter L J, Moffat T P. Potential dependence of competitive adsorption of PEG, Cl-, and SPS/MPS on Cu: an in situ ellipsometric study[J]. Journal of the Electrochemical Society, 2007, 154(5): D277.
[54].Marro J B, Okoro C A, Obeng Y S, et al. The impact of organic additives on copper trench microstructure[J]. Journal of the Electrochemical Society, 2017, 164(9): D543.
[55].Chang S C, Wang Y L, Hung C C, et al. Role of surface tension in copper electroplating[J]. Journal of Vacuum Science & Technology A, 2007, 25(3): 566-569.
[56].Liu C W, Tsao J C, Tsai M S, et al. Effects of wetting ability of plating electrolyte on Cu seed layer for electroplated copper film[J]. Journal of Vacuum Science & Technology A, 2004, 22(6): 2315-2320.
[57].Emekli U, West A C. Electrochemical nucleation of copper: the effect of poly (ethylene glycol)[J]. Journal of the Electrochemical Society, 2010, 157(5): D257.
[58].Kim T Y, Choe S, Kim J J. Decomposition of polyethylene glycol (PEG) at Cu cathode and insoluble anode during Cu electrodeposition[J]. Electrochimica Acta, 2020, 357: 136803.
[59].Larson C, Farr J. Current research and potential applications for pulsed current electrodeposition–a review[J]. Transactions of the IMF, 2012, 90(1): 20- 29.
[60].Li L L, Yang C J. Size control of copper grains by optimization of additives to achieve flat-top copper pillars through electroplating[J]. Journal of the Electrochemical Society, 2017, 164(6): D315.
[61].Kawakami R, Saeki R, Ohgai T. Random crystal orientation and tensile strength of nanocrystalline dumbbell-shaped copper thick films electrodeposited from acidic aqueous solutions containing polyethylene glycol[J]. Materials Research Express, 2023, 10(12): 126515.
[62].Vas’ko V A, Tabakovic I, Riemer S C, et al. Effect of organic additives on structure, resistivity, and room-temperature recrystallization of electrodeposited copper[J]. Microelectronic Engineering, 2004, 75(1): 71-77.
[63].Hasegawa M, Nonaka Y, Negishi Y, et al. Enhancement of the ductility of electrodeposited copper films by room-temperature recrystallization[J]. Journal of the Electrochemical Society, 2006, 153(2): C117.
[64].Huang C, Liou W, Lee C, et al. Effect of organic additives on the mechanical properties of copper electrodeposits[C]//. AESF/EPA Conference for Environmental & Process Excellence. 2004, 149-152
[65].Pasquale M, Gassa L M, Arvia A J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochimica Acta, 2008, 53(20): 5891-5904.
[66].Kozaderov O, Sotskaya N, Yudenkova L, et al. Electrocrystallization and morphology of copper coatings in the presence of organic additives[J]. Coatings, 2023, 13(11): 1896.

相似文献/References:

[1]冀林仙*,王跃峰.多场耦合研究PCB电镀铜[J].电镀与精饰,2022,(11):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
 JI Linxian*,WANG Yuefeng.Research on Copper Electrodeposition of PCB Based on Multi-Physics Coupling[J].Plating & Finishing,2022,(03):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
[2]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
 XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(03):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[3]郑家翀,何 为,陈先明,等.镀镍磷金属片表面处理对电镀铜生长状态影响的研究[J].电镀与精饰,2024,(1):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
 Zheng Jiachong,He Wei,Chen Xianming,et al.Effect of surface treatment on growth state of electroplating copper for nickel-phosphorus plated metal[J].Plating & Finishing,2024,(03):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
[4]刘颖*,邢希瑞,田栋,等.酸性一价铜电镀铜的工艺及能效分析[J].电镀与精饰,2024,(4):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
 Liu Ying*,Xing Xirui,Tian Dong,et al.Energy efficiency analysis of copper electroplating employing acidic cuprous solution[J].Plating & Finishing,2024,(03):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
[5]陈 洁,宗高亮,代禹涵,等.巯基吡啶异构体对电镀铜填盲孔的影响研究[J].电镀与精饰,2024,(9):1.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
 Chen Jie,Zong Gaoliang,Dai Yuhan,et al.Study on the influence of pyrithione isomers on filling blind holes in electroplated copper[J].Plating & Finishing,2024,(03):1.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
[6]性能影响研究.退火对TSV电镀铜膜层性能影响研究[J].电镀与精饰,2024,(10):42.
 Yu Xianxian*,Jiang Chuang,Zhang Cuicui.Effect of annealing on the properties of electroplated copper in TSV[J].Plating & Finishing,2024,(03):42.
[7]方 正,韦相福,杨广柱,等.doi: 10.3969/j.issn.1001-3849.2025.03.015盲孔数值仿真电镀铜研究进展[J].电镀与精饰,2025,(03):106.
 Hu Xiaoqiang,Chen Dedeng.Advances in numerical simulation of copper electroplating in blind vias Fang Zheng1, Wei Xiangfu1,2, Yang Guangzhu1, Mao Xianchang1,3, Wei Song3*,[J].Plating & Finishing,2025,(03):106.
[8]高晓颖,王浩军,周雁文,等.doi: 10.3969/j.issn.1001-3849.2025.04.007HEDP体系无氰镀铜的工艺参数和性能研究[J].电镀与精饰,2025,(04):42.
 Gao Xiaoying,Wang Haojun*,Zhou Yanwen,et al.Research on process parameters and properties of non-cyanide copper plating in HEDP system[J].Plating & Finishing,2025,(03):42.

备注/Memo

未来研究方向将集中于深入探究PEG与其他添加剂的相互作用机制,优化添加剂体系,并探索其他有机聚合醇(如聚丙二醇(PPG))以寻找更优替代品。此外,对PEG影响镀层性能的微观机理研究以及开发更环保、可持续的电镀添加剂,将成为推动电镀技术进步和可持续发展的重要方向。

更新日期/Last Update: 2025-03-18