Liu Binyun*,Zhan Dongping.The mechanism and application of PEG in electronic electroplating of copper Yang Yanzhang1,2, Chen Zhihua2, Zhong Shangbiao 2,Ye Shaoming3,[J].Plating & Finishing,2025,(03):96-105.
doi: 10.3969/j.issn.1001-3849.2025.03.0014PEG在电子电镀铜中的作用机制及应用
- Title:
- The mechanism and application of PEG in electronic electroplating of copper Yang Yanzhang1,2, Chen Zhihua2, Zhong Shangbiao 2,Ye Shaoming3,
- Keywords:
- PEG (polyethylene glycol); electroplated copper; mechanism of action; electroplating performance
- 分类号:
- TG172
- 文献标志码:
- A
- 摘要:
- 电镀铜是电子工业中不可或缺的工艺,广泛应用于印刷电路板、集成电路等电子元件的线路互联制造,铜镀层质量对产品性能和可靠性至关重要。聚乙二醇(PEG)是电镀铜工艺的重要添加剂之一,能改善镀层质量和性能,显著提升电镀产品应用可靠性。本文综述PEG在电镀铜中的作用机制,包括对铜离子还原、镀液性质和铜晶粒生长的影响,以及对铜镀层性能的多方面改善效应。同时,对比不同类型PEG衍生物和类似物的应用效果,并对未来研究方向进行了展望。
- Abstract:
- Copper electroplating is an indispensable process in the electronics industry, widely used in the manufacture of interconnections for printed circuit boards, integrated circuits and other electronic components. The quality of the electroplated copper layer is crucial to product performance and reliability. Polyethylene glycol (PEG) is one of the key additives in copper electroplating processes, which can improve the quality and performance of the coating, significantly enhancing the application reliability of electroplated products. This paper reviews the mechanism of PEG in copper electroplating, including its effects on copper ion reduction, electrolyte properties, and copper grain growth, as well as its multi-faceted improvement effects on coating performance. Furthermore, the applications of different PEG derivatives and analogues are compared, and future research directions are prospected
参考文献/References:
[1].Sekar R. Synergistic effect of additives on electrodeposition of copper from cyanide-free electrolytes and its structural and morphological characteristics[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1665-76.
[2].Radoeva M, Monev M, Ivanov I T, et al. Adhesion improvement of electroless copper coatings by polymer additives[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460: 441-7.
[3].李文畅, 盛施展, 吴金洪, 等. 表面活性剂对Ni-W-P化学镀层沉积行为及性能的影响[J]. 电镀与精饰, 2024, 46(1): 1-8.
[4].邹忠利, 李洋, 单玺畅, 等. 表面活性剂对电镀锌-铟合金性能的影响[J]. 表面技术, 2024, (7), 35-40.
[5].D’Souza A A, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications[J]. Expert opinion on drug delivery, 2016, 13(9): 1257-1275.
[6].Ensing B, Tiwari A, Tros M, et al. On the origin of the extremely different solubilities of polyethers in water[J]. Nature communications, 2019, 10(1): 2893.
[7].Pasquali R C, Taurozzi M P, Bregni C. Some considerations about the hydrophilic–lipophilic balance system[J]. International Journal of Pharmaceutics, 2008, 356(1): 44-51.
[8].Alcantar N A, Aydil E S, Israelachvili J N. Polyethylene glycol-coated biocompatible surfaces[J]. Journal of Biomedical Materials Research, 2000, 51(3): 343-51.
[9].Ulbricht J, Jordan R, Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly (2-oxazoline) s[J]. Biomaterials, 2014, 35(17): 4848-61.
[10].Fruijtier-P?lloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products[J]. Toxicology, 2005, 214(1-2): 1-38.
[11].Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-23.
[12].Ein-Eli Y, Auinat M, Starosvetsky D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors[J]. Journal of power sources, 2003, 114(2): 330-337.
[13].Dow W P, Yen M Y, Lin W B, et al. Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating[J]. Journal of the Electrochemical Society, 2005, 152(11): C769.
[14].Yin L, Liu Z, Yang Z, et al. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for PCB interconnects[J]. Transactions of the IMF, 2010, 88(3): 149-53.
[15].Ko S-L, Lin J-Y, Wang Y-Y, et al. Effect of the molecular weight of polyethylene glycol as single additive in copper deposition for interconnect metallization[J]. Thin Solid Films, 2008, 516(15): 5046-5051.
[16].Wang F, Zhou K, Zhang Q, et al. Effect of molecular weight and concentration of polyethylene glycol on through-silicon via filling by copper[J]. Microelectronic Engineering, 2019, 215: 111003.
[17].Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated Cu filling by electrochemical method[J]. Transactions of the IMF, 2015, 93(4): 190-195.
[18].Chrzanowska A, Mroczka R. Influence of chloride anions and polyethylene glycol on the morphology of electrodeposited copper layers[J]. Electrochimica Acta, 2012, 78: 316-323.
[19].Lin C C, Yen C H, Lin S C, et al. Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils[J]. Journal of the Electrochemical Society, 2017, 164(13): D810.
[20].Xiao N, Pang K, Wang Z, et al. Structural effect of polymers on their microvia filling performance as suppressors during the copper electroplating[J]. International Journal of Electrochemical Science, 2017, 12(2): 1453-1462.
[21].Ryan K, Dunn K, Van Eisden J, et al. Properties of PEG, PPG and their copolymers: influence on copper filling of damascene interconnects[J]. Journal of the Electrochemical Society, 2013, 160(12): D3186.
[22].Xiao N, Li N, Cui G, et al. Triblock copolymers as suppressors for microvia filling via copper electroplating[J]. Journal of the Electrochemical Society, 2013, 160(4): D188.
[23].Zhang Y, An M, Yang P, et al. Electrochemical behavior of through-hole electrodeposition inhibitor EO-PO under periodic pulse reverse[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130238.
[24].Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. Journal of the Electrochemical Society, 2008, 155(10): D632.
[25].Dong M, Zhang Y, Hang T, et al. Structural effect of inhibitors on adsorption and desorption behaviors during copper electroplating for through-silicon vias[J]. Electrochimica Acta, 2021, 372: 137907.
[26].Zhang Y, Chen J, Cheng Y, et al. Novel suppressor for damascene copper electrodeposition: thioether-modified polyether with enhanced adsorption through an adjustable synthesis strategy[J]. Electrochimica Acta, 2024: 144912.
[27].Hai N T, Janser F, Luedi N, et al. Tailored design of suppressor additives for copper plating by combining functionalities[J]. ECS Electrochemistry Letters, 2013, 2(11): D52.
[28].Mendez J, Akolkar R, Landau U. Polyether suppressors enabling copper metallization of high aspect ratio interconnects[J]. Journal of the Electrochemical Society, 2009, 156(11): D474.
[29].Kang J, Kim C M, Yu D Y, et al. Octylphenol ethoxylate surfactant as a suppressor in copper electrodeposition[J]. Transactions of the IMF, 2019, 97(1): 22-27.
[30].Li L L, Yeh H C. Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14358-14367.
[31].Han C, Zhai Y, Chen Y, et al. Alkyl-terminated PEG suppressors for copper electroplating and their hydrophilic and hydrophobic properties[J]. Surface and Coatings Technology, 2024, 484: 130848.
[32].李强. 添加剂PEG, Cl, SPS作用下的铜电结晶过程研究[D]. 重庆: 重庆大学, 2007.
[33].Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984, 52(4): 218-223.
[34].Hill M, Rogers G. Polyethylene glycol in copper electrodeposition onto a rotating disk electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 86(1): 179-188.
[35].Hung C C, Lee W H, Wang Y L, et al. Investigation of the suppression effect of polyethylene glycol on copper electroplating by electrochemical impedance spectroscopy[J]. Journal of Vacuum Science & Technology A, 2008, 26(5): 1109-1114.
[36].Bonou L, Eyraud M, Denoyel R, et al. Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements[J]. Electrochimica Acta, 2002, 47(26): 4139-4148.
[37].Hebert K R, Adhikari S, Houser J E. Chemical mechanism of suppression of copper electrodeposition by poly (ethylene glycol)[J]. Journal of the Electrochemical Society, 2005, 152(5): C324.
[38].Kelly J J, West A C. Copper deposition in the presence of polyethylene glycol: II. electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 1998, 145(10): 3477.
[39].Healy J P, Pletcher D, Goodenough M. The chemistry of the additives in an acid copper electroplating bath: part I. polyethylene glycol and chloride ion[J]. Journal of Electroanalytical Chemistry, 1992, 338(1): 155-165.
[40].Kelly J J, West A C. Copper deposition in the presence of polyethylene glycol: I. quartz crystal microbalance study[J]. Journal of the Electrochemical Society, 1998, 145(10): 3472.
[41].Willey M J, West A C. Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition[J]. Journal of the Electrochemical Society, 2006, 153(10): C728.
[42].Mroczka R, S?odkowska A. The properties of the polyethylene glycol complex PEG(Na +)(Cu+) on the copper electrodeposited layer by time-of-flight secondary-ion mass spectrometry. the new insights[J]. Electrochimica Acta, 2020, 339: 135931.
[43].Manu R, Jayakrishnan S. Influence of polymer additive molecular weight on surface and microstructural characteristics of electrodeposited copper[J]. Bulletin of Materials Science, 2011, 34: 347-356.
[44].Petri M, Kolb D M, Memmert U, et al. Adsorption of PEG on Au(111) single-crystal electrodes and its influence on copper deposition[J]. Journal of the Electrochemical Society, 2004, 151(12): C793.
[45].Lai Z, Wang C, Huang Y, et al. Temperature-dependent inhibition of PEG in acid copper plating: theoretical analysis and experiment evidence[J]. Materials Today Communications, 2020, 24: 100973.
[46].Hebert K R. Analysis of current-potential hysteresis during electrodeposition of copper with additives[J]. Journal of the Electrochemical Society, 2001, 148(11): C726.
[47].Moffat T, Wheeler D, Huber W, et al. Superconformal electrodeposition of copper[J]. Electrochemical and Solid-State Letters, 2001, 4(4): C26.
[48].Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system: I. kinetic measurements: Influence of SPS[J]. Journal of the Electrochemical Society, 2004, 151(4): C262.
[49].Nedumthakady N, Deprospo B, Sharma H, et al. In-situ investigation of organic additive interactions in copper electroplating solutions with surface enhanced Raman spectroscopy (SERS)[C]//IEEE. Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 2019, 89-90.
[50].Mroczka R, S?odkowska A, ?adniak A, et al. Interaction of bis-(sodium-sulfopropyl)-disulfide and polyethylene glycol on the copper electrodeposited layer by time-of-flight secondary-ion mass spectrometry[J]. Molecules, 2023, 28(1): 433.
[51].Willey M J, West A C. SPS adsorption and desorption during copper electrodeposition and its impact on PEG adsorption[J]. Journal of the Electrochemical Society, 2007, 154(3): D156.
[52].Tan M, Guymon C, Wheeler D R, et al. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154(2): D78.
[53].Walker M L, Richter L J, Moffat T P. Potential dependence of competitive adsorption of PEG, Cl-, and SPS/MPS on Cu: an in situ ellipsometric study[J]. Journal of the Electrochemical Society, 2007, 154(5): D277.
[54].Marro J B, Okoro C A, Obeng Y S, et al. The impact of organic additives on copper trench microstructure[J]. Journal of the Electrochemical Society, 2017, 164(9): D543.
[55].Chang S C, Wang Y L, Hung C C, et al. Role of surface tension in copper electroplating[J]. Journal of Vacuum Science & Technology A, 2007, 25(3): 566-569.
[56].Liu C W, Tsao J C, Tsai M S, et al. Effects of wetting ability of plating electrolyte on Cu seed layer for electroplated copper film[J]. Journal of Vacuum Science & Technology A, 2004, 22(6): 2315-2320.
[57].Emekli U, West A C. Electrochemical nucleation of copper: the effect of poly (ethylene glycol)[J]. Journal of the Electrochemical Society, 2010, 157(5): D257.
[58].Kim T Y, Choe S, Kim J J. Decomposition of polyethylene glycol (PEG) at Cu cathode and insoluble anode during Cu electrodeposition[J]. Electrochimica Acta, 2020, 357: 136803.
[59].Larson C, Farr J. Current research and potential applications for pulsed current electrodeposition–a review[J]. Transactions of the IMF, 2012, 90(1): 20- 29.
[60].Li L L, Yang C J. Size control of copper grains by optimization of additives to achieve flat-top copper pillars through electroplating[J]. Journal of the Electrochemical Society, 2017, 164(6): D315.
[61].Kawakami R, Saeki R, Ohgai T. Random crystal orientation and tensile strength of nanocrystalline dumbbell-shaped copper thick films electrodeposited from acidic aqueous solutions containing polyethylene glycol[J]. Materials Research Express, 2023, 10(12): 126515.
[62].Vas’ko V A, Tabakovic I, Riemer S C, et al. Effect of organic additives on structure, resistivity, and room-temperature recrystallization of electrodeposited copper[J]. Microelectronic Engineering, 2004, 75(1): 71-77.
[63].Hasegawa M, Nonaka Y, Negishi Y, et al. Enhancement of the ductility of electrodeposited copper films by room-temperature recrystallization[J]. Journal of the Electrochemical Society, 2006, 153(2): C117.
[64].Huang C, Liou W, Lee C, et al. Effect of organic additives on the mechanical properties of copper electrodeposits[C]//. AESF/EPA Conference for Environmental & Process Excellence. 2004, 149-152
[65].Pasquale M, Gassa L M, Arvia A J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochimica Acta, 2008, 53(20): 5891-5904.
[66].Kozaderov O, Sotskaya N, Yudenkova L, et al. Electrocrystallization and morphology of copper coatings in the presence of organic additives[J]. Coatings, 2023, 13(11): 1896.
相似文献/References:
[1]冀林仙*,王跃峰.多场耦合研究PCB电镀铜[J].电镀与精饰,2022,(11):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
JI Linxian*,WANG Yuefeng.Research on Copper Electrodeposition of PCB Based on Multi-Physics Coupling[J].Plating & Finishing,2022,(03):18.[doi:10.3969/j.issn.1001-3849.2022.11.004]
[2]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(03):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[3]郑家翀,何 为,陈先明,等.镀镍磷金属片表面处理对电镀铜生长状态影响的研究[J].电镀与精饰,2024,(1):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
Zheng Jiachong,He Wei,Chen Xianming,et al.Effect of surface treatment on growth state of electroplating copper for nickel-phosphorus plated metal[J].Plating & Finishing,2024,(03):84.[doi:10.3969/j.issn.1001-3849.2024.01.013]
[4]刘颖*,邢希瑞,田栋,等.酸性一价铜电镀铜的工艺及能效分析[J].电镀与精饰,2024,(4):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
Liu Ying*,Xing Xirui,Tian Dong,et al.Energy efficiency analysis of copper electroplating employing acidic cuprous solution[J].Plating & Finishing,2024,(03):99.[doi:10.3969/j.issn.1001-3849.2024.04.014]
[5]陈 洁,宗高亮,代禹涵,等.巯基吡啶异构体对电镀铜填盲孔的影响研究[J].电镀与精饰,2024,(9):1.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
Chen Jie,Zong Gaoliang,Dai Yuhan,et al.Study on the influence of pyrithione isomers on filling blind holes in electroplated copper[J].Plating & Finishing,2024,(03):1.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.001]
[6]性能影响研究.退火对TSV电镀铜膜层性能影响研究[J].电镀与精饰,2024,(10):42.
Yu Xianxian*,Jiang Chuang,Zhang Cuicui.Effect of annealing on the properties of electroplated copper in TSV[J].Plating & Finishing,2024,(03):42.
[7]方 正,韦相福,杨广柱,等.doi: 10.3969/j.issn.1001-3849.2025.03.015盲孔数值仿真电镀铜研究进展[J].电镀与精饰,2025,(03):106.
Hu Xiaoqiang,Chen Dedeng.Advances in numerical simulation of copper electroplating in blind vias Fang Zheng1, Wei Xiangfu1,2, Yang Guangzhu1, Mao Xianchang1,3, Wei Song3*,[J].Plating & Finishing,2025,(03):106.
[8]高晓颖,王浩军,周雁文,等.doi: 10.3969/j.issn.1001-3849.2025.04.007HEDP体系无氰镀铜的工艺参数和性能研究[J].电镀与精饰,2025,(04):42.
Gao Xiaoying,Wang Haojun*,Zhou Yanwen,et al.Research on process parameters and properties of non-cyanide copper plating in HEDP system[J].Plating & Finishing,2025,(03):42.
备注/Memo
未来研究方向将集中于深入探究PEG与其他添加剂的相互作用机制,优化添加剂体系,并探索其他有机聚合醇(如聚丙二醇(PPG))以寻找更优替代品。此外,对PEG影响镀层性能的微观机理研究以及开发更环保、可持续的电镀添加剂,将成为推动电镀技术进步和可持续发展的重要方向。