PDF下载 分享
[1]肖 革,蓝玉良,向可友,等.汽车轻量化钢材及零部件表面处理技术的发展趋势[J].电镀与精饰,2019,(7):25-30.[doi:10.3969/j.issn.1001-3849.2019.07.006]
 XIAO Ge,LAN Yuliang,XIANG Keyou,et al.Development Trend of Surface Treatment Technology for Automobile Lightweight Steel and Parts[J].Plating & Finishing,2019,(7):25-30.[doi:10.3969/j.issn.1001-3849.2019.07.006]
点击复制

汽车轻量化钢材及零部件表面处理技术的发展趋势

参考文献/References:

[1] 杨丽霞, 赵明哲. 汽车轻量化用高强钢的介绍[J]. 科技风, 2015, 10: 64-64.
[2] 康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6): 1-7.
[3] 卢凤喜, 王向成. 汽车用高强度表面处理钢板的生产技术特征[J]. 冶金信息导刊, 2006, 3: 14-16.
[4] 康永林,陈贵江,朱国明,等. 新一代汽车用先进高强钢的成形与应用[J]. 钢铁, 2010, 45(8): 1-6.
[5] Lesch C, Kwiaton N, Klose F B. Advanced high strength steels (AHSS) for automotive applications - tailored properties by smart microstructural adjustments[J]. Steel Research International, 2017: 1700210.
[6] Safari H, Nahvi H, Esfahanian M. Improving automotive crashworthiness using advanced high strength steels[J]. International Journal of Crashworthiness, 2018, 23(6): 645-659.
[7] Sun G, Zhang H, Wang R, et al. Multi-objective reliability-based optimization for crashworthy structures coupled with metal forming process[J]. Structural and Multidisciplinary Optimization, 2017, 56(6): 1571-1587.
[8] Tang T, Gao Y, Yao L, et al. Development of high-performance energy absorption structures based on the structure design and nanocrystallization[J]. Materials & design, 2017, 137: 214-225.
[9] Ozcanli M, Dede G. Evaluation of advanced steel usage on seat construction to reduce bus weight in compliance with FMVSS and APTA regulations [J]. International Journal of Heavy Vehicle Systems, 2018, 25(2): 235-247.
[10] Menghan W, Shuaijun W, Zhi L. Multi-step forming punch (MFP) for improving stretch-flange ability of advanced high-strength steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 1627-1638.
[11] Ruszkiewicz B J, Mears L. Investigation of the electroplastic effect through nominally equal energy deformation[C]. ASME 2018 13th International Manufacturing Science and Engineering Conference, 2018, 6: 18-22.
[12] Thomas B, Matthias N, Andreas F. Numerical-experimental investigation of load paths in DP800 dual phase steel during nakajima test[C]. Proceedings of 21st International Esaform Conference on Material Forming (ESAFORM 2018), AIP Conference Proceedings: 960: UNSP 160021.
[13] 王华, 陆士堃, 欧阳泽华. 最新汽车紧固件表面处理技术[J]. 上海涂料, 2018, 56(3): 48-51.
[14] 徐关庆, 林胜荣. 汽车防护性表面处理技术发展[J]. 电镀与精饰, 2007, 29(4), 27-32.
[15] 刘军松, 刘定富, 苏琪, 等. 电镀Zn-Ni-P合金及其耐蚀性研究[J]. 电镀与精饰, 2019, 41(2): 5-9.
[16] 吴忠. 汽车用ZL101A铝合金表面Ni-Co合金镀层的硬度[J]. 电镀与精饰, 2018, 40(11): 5-9.
[17] 徐良, 向可友, 刘梦兰, 等. 汽车零部件电沉积锌-锰合金镀层进展[J]. 电镀与精饰, 2017, 39(9): 24-27.
[18] 卢帅, 郭昭, 齐海东, 等. 占空比对脉冲电镀Zn-Ni-Mn合金镀层的影响[J]. 电镀与精饰, 2017, 39(11): 1-4.
[19] Kozhukharov S V, Samichkov V I, Girginov C A. Actual trends in the elaboration of advanced multifunctional coating systems for the efficient protection of lightweight aircraft alloys[J]. Corrosion Review, 2017, 35(6): 383-396.
[20] 周阳亮. 高效环保型汽车零配件碱性无氰镀锌的性能对比[J]. 上海涂料, 2018, 56(2): 32-36.
[21] 张靖, 赵晓宏, 高成勇, 等. 汽车用锌镍合金电镀现状及研究进展[M]. 2015中国汽车工程学会年会论文集, 2015, 3: 217-220.
[22] 高荣龙, 向可友, 林建华, 等. Zn-Ni合金镀层中添加第三种元素和纳米颗粒的研究新进展[J]. 表面技术, 2018, 47(10): 262-268.
[23] Lee L, Behera P, Sriraman K R, et al. Effects of humidity on the sliding wear properties of Zn-Ni alloy coatings[J]. RSC Advances, 2017, 7(37): 22662-22671.
[24] Behrouz B, Mohammad G. Electrodeposition of Zn-Ni-P compositionally modulated multilayer coatings: An attempt to deposit Ni-P and Zn-Ni alloys from a single bath[J]. Electrochemistry Communications, 2017, 81: 93-96.
[25] Abou-Krisha M M, Assaf F H, El-Naby S A. The influence of Fe2+ concentration and deposition time on the corrosion resistance of the electrodeposited zinc-nickel-iron alloys[J]. Arabian Journal of Chemistry, 2016, 9(2): S1349-S1356.
[26] Aboukrisha M M, Assaf F H, Alduaij O K, et al. Deposition potential influence on the electrodeposition of Zn-Ni-Mn alloy[J]. Transactions of the Indian Institute of Metals, 2016, 70(1): 31-40.
[27] Das S, Banthia S, Patra A, et al. Novel bilayer Zn, Ni/Ni, Co, SiC nanocomposite coating with exceptional corrosion and wear properties by pulse electrodeposition [J]. Journal of Alloys and Compounds, 2018, 738: 394-404.
[28] Shourgeshty M, Aliofkhazraei M, Karimzadeh A, et al. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings[J]. Materials Research Express, 2017, 4(9): 096406.
[29] Abdulwahab M, Fayomi O S I, Popoola A P I, et al. In-situ hybrid study of thermal behaviour of ZnNi and Zn-Ni-Al2O3 nanocrystallite thin films induced TEA/MEA by electrocodeposition[J]. Results in Physics, 2017, 7: 213-215.
[30] RoventiG, Giuliani G, PisaniM, et al. Electrodeposition of Zn-Ni-ZrO2, Zn-Ni-Al2O3 and Zn-Ni-SiC nanocomposite coatings from an alkaline bath[J]. International Journal Electrochemical Science, 2017, 12: 663-678.

相似文献/References:

[1]吴志强,蔡春芳*,齐锐丽,等.汽车轻量化背景下塑料的应用及其电镀工艺[J].电镀与精饰,2023,(4):88.[doi:10.3969/j.issn.1001-3849.2023.04.014]
 Wu Zhiqiang,Cai Chunfang*,Qi Ruili,et al.Application and electroplating process of plastics under the background of automotive lightweight[J].Plating & Finishing,2023,(7):88.[doi:10.3969/j.issn.1001-3849.2023.04.014]

备注/Memo

收稿日期: 2019-05-28;修回日期: 2019-06-15
作者简介:肖革(1966-),男,学士,工程师,email:xiaoge@mstzh.com
通信作者: 刘慧丛,email:liuhc@buaa.edu.cn
基金项目: 国家重点研发计划(2018YFB2002000);国家自然科学基金项目(U1637204)

更新日期/Last Update: 2019-07-10