Guo Wei,Li Tong*.Corrosion resistance and mechanical properties of Zn-Ni-W alloy coatings electrodeposited on red copper[J].Plating & Finishing,2023,(11):18-26.[doi:10.3969/j.issn.1001-3849.2023.11.003]
紫铜电沉积 Zn-Ni-W 合金镀层的耐腐蚀与机械性能?/div>
- Title:
- Corrosion resistance and mechanical properties of Zn-Ni-W alloy coatings electrodeposited on red copper
- 关键词:
- Zn-Ni-W 合金镀层; 钨酸钠浓度; 耐腐蚀性能; 耐磨性能; 弹性恢复性能
- Keywords:
- Zn-Ni-W alloy coating ; concentration of sodium tungstate ; corrosion resistance ; wear resistance ; elastic recovery performance
- 分类号:
- TQ153
- 文献标志码:
- A
- 摘要:
- 采用含有钨酸钠的镀液,通过电沉积将 W 元素引入 Zn-Ni 合金镀层中,以期获得具有优良耐腐蚀与机械性能的 Zn-Ni-W 合金镀层。研究了钨酸钠浓度对 Zn-Ni-W 合金镀层的表面形貌、成分、相结构、耐腐蚀性能、硬度、耐磨性能以及弹性恢复性能的影响。结果表明:添加适量钨酸钠制备的 Zn-Ni-W 合金镀层晶粒类似花蕊状,以缠绕形式结合紧密起到强化效果,其耐腐蚀性能、硬度、耐磨性能和弹性恢复性能相比于 Zn-Ni 合金镀层提高,但 Zn-Ni-W 合金镀层的物相组成与 Zn-Ni 合金镀层相同。当钨酸钠浓度为 35 g/L 时,由于电沉积 Zn-Ni-W 合金镀层过程中引起较大程度晶格畸变,致使晶粒呈花蕊状缠绕结合更紧密,起到较好的强化效果。该镀层具有最低的腐蚀电流密度 9.74×10 - 7 A/cm 2 ,对紫铜基体的防护效率达到 98.4% ,硬度达到 378.2 HV ,较 Zn-Ni 合金镀层提高约 160 HV ,还表现出优良的耐磨性能和弹性恢复性能。
- Abstract:
- : In order to obtain a Zn-Ni-W alloy coating with excellent corrosion resistance and mechanical properties , W element was introduced into the Zn-Ni alloy coating via electrodeposition from the plating solution containing sodium tungstate. The effect of sodium tungstate concentration on the surface morphology , composition , phase structure , corrosion resistance , hardness , wear resistance and elastic recovery properties of Zn-Ni-W alloy coating was investigated. The results show that the Zn-Ni-W alloy coating prepared by adding an appropriate amount of sodium tungstate has flower-like grains and is tightly bonded in the form of winding playing a strengthening effect. The corrosion resistance , hardness , wear resistance and elastic recovery properties of Zn-Ni-W alloy coating are better than those of Zn-Ni alloy coating , but the phase composition of Zn-Ni-W alloy coating is the same as that of Zn-Ni alloy coating. When the sodium tungstate concentration is 35 g/L , the electrodeposition process of Zn-Ni-W alloy coating causes a large degree of lattice distortion , resulting in winding staminal and tighter binding of the grains , which plays a better strengthening effect. The Zn-Ni-W alloy coating has the lowest corrosion current density of 9.74×10 - 7 A/cm 2 , and the protection efficiency on red copper matrix reaches 98.4%. The hardness of the Zn-Ni-W alloy coating reaches 378.2 HV , which is about 160 HV higher than that of Zn-Ni alloy coating , and it also shows excellent wear resistance and elastic recovery properties.
参考文献/References:
[1] 曾邱 , 李智勇 , 马梦婷 , 等 . 镀液组成对碱性体系 Zn-Ni 合金镀层性能的影响 [J]. 表面技术 , 2020, 49(12): 244-251.
[2] Crasta R J, Shetty S. Comparative study of electrodeposited Zn and Zn-Ni alloy coatings for improved corrosion protection in chloride medium[J]. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57: 139-146.
[3] 刘军松 , 刘定富 , 苏琪 , 等 . 电镀 Zn-Ni-P 合金及其耐蚀性研究 [J]. 电镀与精饰 , 2019, 41(2): 1-5.
[4] 卢帅 , 郭昭 , 齐海东 , 等 . 占空比对脉冲电镀 Zn-Ni-Mn 合金镀层的影响 [J]. 电镀与精饰 , 2017, 39(11): 1-4.
[5] Bhat R S, Chitharanjan H A. Optimization of bright Zn-Co-Ni alloy coatings and its characterization[J]. Analytical and Bioanalytical Electrochemistry, 2013, 5(5): 609-621.
[6] Oliveira R P, Bertagnolli D C, Silva L D, et al. Effect of Fe and Co co-deposited separately with Zn-Ni by electrodeposition on ASTM A624 steel[J]. Applied Surface Science, 2017, 420: 53-62.
[7] 董鹏 , 张英杰 , 范云鹰 , 等 . Zn-Ni-La 合金电沉积工艺研究 [J]. 材料保护 , 2008, 41(11): 16-17.
[8] 程露 , 王亚强 , 张金钰 , 等 . 合金化效应对 Ni-W 镀层微观组织和力学性能的影响 [J]. 稀有金属材料与工程 , 2021, 50(1): 145-152.
[9] Li Hongjie, He Yi, Luo Pingya, et al. Preparation of laminar alpha-ZrP nanosheets enhanced Ni-W nanocomposite coating and investigation of its mechanical and anti-corrosion properties[J]. Surface & Coatings Technology, 2021, 423: 127590.
[10] Weston D P, Harris S J, Shipway P H, et al. Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath[J]. Electrochimica Acta, 2010, 55(20): 5695-5708.
[11] Krasikov A V, Kastsova A G, Markov M A, et al. Electrochemical synthesis of amorphous layers from a nonequilibrium Co-W alloy as a precursor for nanocomposite coating formation[J]. Russian Metallurgy (Metally), 2022, 2022: 666-673.
[12] Sakhnenko M V N, Nenastina T, Volobuyev M, et al. Corrosion and mechanical properties of nanostructure electrolytic Co-W and Fe-Co-W alloys[J]. Materials Today: Proceedings, 2022, 50(4): 463-469.
[13] 毕凤琴 , 张成果 , 徐子怡 , 等 . 不同类型缓蚀剂在含饱和 CO 2 油田采出液中对 P110 钢的缓蚀性能研究 [J]. 兵器材料科学与工程 , 2013, 36(2): 9-13.
[14] 吴玉程 , 舒霞 , 解挺 , 等 . Ni-W, Ni-Fe 合金纳米晶涂层电沉积与性能研究 [J]. 中国表面工程 , 2005, 18(3): 1-6.
[15] 刘慧娟 , 张平 , 周琼宇 , 等 . 酸性硫酸盐电解液中沉积 Ni-W 合金的动力学 [J]. 腐蚀与防护 , 2013, 34(12): 1062-1066.
[16] 刘义林 , 袁康杰 , 王军华 , 等 . 化学镀高 Cu 含量 Ni-Cu-P 镀层的组织结构及显微力学性能研究 [J]. 材料保护 , 2022, 55(7): 144-149.
[17] 李荣飞 , 罗倩 , 袁琳 , 等 . 触变 - 塑变复合成形铸铁材料的耐磨损和抗腐蚀性能研究 [J]. 精密成形工程 , 2022, 14(6): 50-58.
[18] Rodichev A, Novikov A, Gorin A, et al. Analysis of the wear resistance of a hard anti-friction coating, applied to a plain bearing, under the conditions of boundary friction[J]. Transportation Research Procedia, 2021, 57: 573-580.
[19] 杨堃 , 张明 , 孙小岚 . TC2,TC6 表面喷涂 WC-17Co 与电镀铬耐磨性能对比 [J]. 电镀与精饰 , 2021, 43(10): 26-30.
[20] 赵帅 . 表面微弧处理对 QT600-3 组织及性能的影响研究 [J]. 材料保护 , 2021, 54(2): 113-117.
备注/Memo
收稿日期: 2022-12-24 修回日期: 2023-01-08 作者简介: 郭伟( 1982 ―),硕士,副教授,主要研究方向为机械材料、表面工程, email : Henan_edu@126.com 通信作者: 李桐( 1984 ―),博士,副教授,主要研究方向为功能材料、机电工程, email : li18916550@126.com 基金项目: 河南省重点研发与推广专项项目( 202102310204 )