Tang Xiaojun *.Application research progress of environmentally friendly corrosion inhibitors in metal pipes[J].Plating & Finishing,2023,(11):93-100.[doi:10.3969/j.issn.1001-3849.2023.11.014]
环保缓蚀剂在金属管材中的应用研究进展
- Title:
- Application research progress of environmentally friendly corrosion inhibitors in metal pipes
- Keywords:
- industrial sector ; metal corrosion ; functional failure ; corrosion inhibitors
- 分类号:
- TG172.3
- 文献标志码:
- A
- 摘要:
- 金属腐蚀问题一直是工业领域中难以彻底解决的问题,而传统缓蚀剂的毒副作用又会对环境和健康造成巨大隐患,这就为环保缓蚀剂的发展带来了新的机遇。本文综述了金属管材腐蚀的类型和成因、腐蚀防治措施、环保缓蚀剂作用机理及其在金属管材中的应用现状,对比了植物提取物缓蚀剂、生物聚合物缓蚀剂、离子液体缓蚀剂等环保缓蚀剂的技术优势和短板,总结了不同类型环保缓蚀剂的作用效果及适用条件,并对环保缓蚀剂未来的发展方向进行了展望。
- Abstract:
- : The problem of metal corrosion has always been a difficult problem to completely solve in the industrial field , and the toxic side effects of traditional corrosion inhibitors can pose huge risks to the environment and health , which brings new opportunities for the development of environmentally friendly corrosion inhibitors. For this reason , the types and causes of corrosion in metal pipes , corrosion prevention and control measures , mechanism of action of environmental corrosion inhibitors , and their application status in metal pipes were reviewed in this paper. The technical advantages and shortcomings of environmental corrosion inhibitors such as plant extract corrosion inhibitors , biopolymer corrosion inhibitors and ionic liquid corrosion inhibitors were compared. The effects and applicable conditions of different types of environmental corrosion inhibitors were summarized , and their future development trends were prospected.
参考文献/References:
[1] Farhadian A, Zhao Y, Naeiji P, et al. Simultaneous inhibition of natural gas hydrate formation and CO 2 /H 2 S corrosion for flow assurance inside the oil and gas pipelines[J]. Energy, 2023, 269(4): 126797.
[2] 王思权 , 陈世波 , 李焰 , 等 . 小口径管道腐蚀及防护策略研究进展 [J]. 材料导报 , 2020, 34(19): 19166-19172.
[3] 贺莎莎 , 韩新福 , 赖喜祥 , 等 . 碳钢 CO 2 腐蚀的缓蚀剂策略及缓蚀行为研究进展 [J]. 表面技术 , 2023, 52(7): 117-129.
[4] 李永胜 , 黄从树 , 付琬璐 , 等 . 海洋防腐领域中有机缓蚀剂的研究进展 [J]. 精细化工 , 2023, 40(6): 1161-1175.
[5] 杲广尧 , 曹凤婷 , 高雅 , 等 . 金属表面有机防腐涂层研究进展 [J]. 材料研究与应用 , 2023, 17(2): 251-264.
[6] 李怡成 , 关小红 , 孔兰菊 . 新疆油田高盐含氧体系缓蚀剂的性能研究 [J]. 工业水处理 , 2023, 43(6): 143-149.
[7] 闫康平 , 陈匡民 . 过程装备腐蚀与防护 [M]. 北京 : 化学工业出版社 , 2009.
[8] Farh H M H, Ben Seghier M E, Zayed T. A comprehensive review of corrosion protection and control techniques for metallic pipelines[J]. Engineering Failure Analysis, 2022, 143(1): 106885.
[9] Hameed R S A, Aleid G M S, Mohammad D, et al. Spinacia oleracea extract as green corrosion inhibitor for carbon steel in hydrochloric acid solution[J]. International Journal of Electrochemical Science, 2022, 17(10): 221017.
[10] Hassannejad H, Nouri A. Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution[J]. Journal of Molecular Liquids, 2018, 254(3): 377-382.
[11] Wang Q, Zhang Q, Zheng H, et al. Insight into anti- corrosion behavior of protein extract as eco-friendly corrosion inhibitor[J]. Sustainable Chemistry and Pharmacy, 2023, 34: 101177.
[12] Deepa K, Nayaka Y A. Synthesis of CuO micro and nanoparticles as composite additives for corrosion resistant Zn-composite coatings on mild steel[J]. Inorganic and Nano-Metal Chemistry, 2020, 50(5): 354-360.
[13] 刘拓东 , 沈超 , 孙天晓 , 等 . 植物提取物缓蚀剂在金属防腐中的研究进展 [J]. 应用化工 , 2022, 51(9): 2756-2761.
[14] Ehsani A, Mahjani M G, Hosseini M, et al. Evaluation of thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory[J]. Journal of Colloid and Interface Science, 2017, 490(3): 444-451.
[15] Shahini M, Keramatinia M, Ramezanzadeh M, et al. Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution[J]. Journal of Molecular Liquids, 2021, 342(11): 117570.
[16] Maizia R, Zaabar A, Djermoune A, et al. Experimental assessment and molecular-level exploration of the mechanism of action of nettle (urtica dioica L.) plant extract as an eco-friendly corrosion inhibitor for X38 mild steel in sulfuric acidic medium[J]. Arabian Journal of Chemistry, 2023, 16(8): 104988.
[17] Aziz M, Hamzah E, Selamat M. Performances of plant-based corrosion inhibitors in controlling corrosion of mild steel in sodium chloride environment[J]. Materials Today: Proceedings, 2022, 51(2): 1344-1349.
[18] 李继勇 . 石油天然气管道成膜型缓蚀剂研究进展 [J]. 油田化学 , 2019, 36(3): 551-557.
[19] Zhang Q H, Xu N, Jiang Z N, et al. Chitosan derivatives as promising green corrosion inhibitors for carbon steel in acidic envi ronment: Inhibition performance and interfacial adsorption mechanism[J]. Journal of Colloid and Interface Science, 2023, 640: 1052-1067.
[20] Nadi I, Belattmania Z, Sabour B, et al. Sargassum muticum extract based on alginate biopolymer as a new efficient biological corrosion inhibitor for carbon steel in hydrochloric acid pickling environment: Gravimetric, electrochemical and surface studies[J]. International Journal of Biological Macromolecules, 2019, 141: 137-149.
[21] Obot I B, Onyeachu I B, Kumar A M. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium[J]. Carbohydrate Polymers, 2017, 178: 200-208.
[22] Gowraraju N, Jagadeesan S, Ayyasamy K, et al. Adsorption characteristics of iota-carrageenan and inulin biopolymers as potential corrosion inhibitors at mild steel/sulphuric acid interface[J]. Journal of Molecular Liquids, 2017, 232(4): 9-19.
[23] Biswas A, Das D, Lgaz H, et al. Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: Electrochemical, surface morphological and theoretical studies[J]. Journal of Molecular Liquids, 2019, 275: 867-878.
[24] 何需要 , 陈仁义 , 刘明 , 等 . TEPA/TBHQ 复配对生物柴油氧化安定 - 腐蚀性影响 [J/OL]. 化工进展 , 2023-02-09.
[25] 冯丽 , 张胜涛 , 郑思远 , 等 . 卤素阴离子对离子液体缓蚀性能的影响 [J]. 中国腐蚀与防护学报 , 2022, 42(5): 791-797.
[26] Schmitzhaus T E, Vega M R O, Schroeder R, et al. Localized corrosion behavior studies by SVET of 1010 steel in different concentrations of sodium chloride containing [m-2HEA][Ol] ionic liquid as corrosion inhibitor[J]. Electrochimica Acta, 2022, 419: 140385.
[27] Mobin M, Aslam R, Salim R, et al. An investigation on the synthesis, characterization and anti-corrosion properties of choline based ionic liquids as novel and environmentally friendly inhibitors for mild steel corrosion in 5% HCl[J]. Journal of Colloid and Interface Science, 2022, 620: 293-312.
[28] Haldhar R, Raorane C, Mishra V K, et al. Development of different chain lengths ionic liquids as green corrosion inhibitors for oil and gas industries: Experimental and theoretical investigations[J]. Journal of Molecular Liquids, 2023, 372: 121168.
[29] EL Hajjaji F, Ech-chihbi E, Salim R, et al. A detailed electronic-scale DFT modeling/MD simulation, electrochemical and surface morphological explorations of imidazolium-based ionic liquids as sustainable and non- toxic corrosion inhibitors for mild steel in 1 M HCl[J]. Materials Science and Engineering: B, 2023, 289: 116232.
[30] Berdimurodov E, Kholikov A, Akbarov K, et al. Novel cucurbit [6] uril-based [3] rotaxane supramolecular ionic liquid as a green and excellent corrosion inhibitor for the chemical industry[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127837.
[31] 李红玲 . 环境友好型达克罗处理技术的现状及研究进展 [J/OL]. 表面技术 , 2022-10-25.
[32] Pais M, Rao P. Green nanoparticles as a sustainable inhibitor to attenuate acid corrosion of zinc[J]. Journal of Molecular Structure, 2023, 1286: 135634.
[33] Pais M, George S D, Rao P. Glycogen nanoparticles as a potential corrosion inhibitor[J]. International Journal of Biological Macromolecules, 2021, 182: 2117-2129.
[34] Umoren S, Madhankumar A. Effect of addition of CeO 2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium[J]. Journal of Molecular Liquids, 2016, 224: 72-82.
[35] Mobin M, Ahmad I, Aslam R, et al. Characterization and application of almond gum-silver nanocomposite as an environmentally benign corrosion inhibitor for mild steel in 1 M HCl[J]. Materials Chemistry and Physics, 2022, 289: 126491.
[36] Cen H Y, Wu C G, Chen Z Y. N, S Co-doped carbon coated MnS/MnO/Mn nanoparticles as a novel corrosion inhibitor for carbon steel in CO 2 -saturated NaCl solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127528.
[37] El Sayed M Y, El Ghouch N, Younes G O, et al. Structural, morphological, and magneto-optical investigations of pure and (Sn, Zn) co-doped CuO nanoparticles: A novel corrosion inhibitor in acidic media[J]. Materials Today Communications, 2023, 35: 105490.
相似文献/References:
[1]胡超鹤*,杭智军,王媛.氯盐型融雪剂用高效复合缓蚀剂的性能研究[J].电镀与精饰,2023,(9):23.[doi:10.3969/j.issn.1001-3849.2023.09.004]
Hu Chaohe*,Hang Zhijun,Wang Yuan.Properties of the high-efficiency composite corrosion inhibitor for chloride-based deicing agents[J].Plating & Finishing,2023,(11):23.[doi:10.3969/j.issn.1001-3849.2023.09.004]
备注/Memo
收稿日期: 2023-06-26 修回日期: 2023-08-25 * 通信作者: 唐晓军( 1979 ―),男,硕士,高级工程师, email : Tangxj7788@163.com 基金项目 : 重庆市教育委员会科学技术研究项目 KJQN202203224?/html>