Yu Dinghang,Li Lingjing,Xu Xiaolin,et al.Investigation on high-temperature resistant sealants for zinc-nickel plating[J].Plating & Finishing,2024,(5):85-91.[doi:10.3969/j.issn.1001-3849.2024.05.012]
锌镍镀层耐高温封闭剂研究
- Title:
- Investigation on high-temperature resistant sealants for zinc-nickel plating
- 分类号:
- TQ153.1+3
- 文献标志码:
- A
- Abstract:
- : In the process of hydrogen removal in alkaline zinc-nickel roll plating lines , traditional sealing agents are unable to withstand high temperatures , resulting in the hydrogen removal step occurring before the sealing step. Consequently , this leads to complex operations and an inability to fully release production capacity. This article aims to develop a high-temperature resistant alkaline zinc-nickel sealing agent , allowing the hydrogen removal heat treatment step to be placed after the passivation sealing step , thereby contributing to the enhancement of the automation level of zinc-nickel plating. By employing an orthogonal experimental approach and combining techniques such as field emission scanning electron microscopy , X-ray photoelectron spectroscopy , Fourier-transform infrared spectroscopy , thermogravimetric analysis , Tafel curves , and alternating current impedance , the effects of lithium silicate , sodium silicate , sodium tungstate , sodium dihydrogen phosphate dosage , as well as temperature and time on the high-temperature resistance of the sealing layer were investigated. The results indicate that the optimal sealing agent solution contains 100 mL of water , 25 mL of lithium silicate solution , 5 g of sodium silicate , 0.2 g of sodium tungstate , and 0.02 g of sodium dihydrogen phosphate in a total volume of 125 mL. After immersing the specimens in this solution for 10 minutes , followed by removal and drying at 60 °C , a 3-h hydrogen removal heat treatment at 250 °C results in appearance of red rust occurred for more than 2000 hours on specimens under ISO9227 standard , which significantly surpass the 720 h without red rustindustrystandard.
参考文献/References:
[1] 汤新生 , 杭冬良 , 周佩佩 . 含镍量为 12% ~ 15% 的碱性锌镍合金电镀工艺 [J]. 电镀与涂饰 , 2012, 31(2): 10-13.
[2] 王宗雄 , 倪孝平 , 鲍新华 , 等 . 镀层封闭剂的应用 [J]. 电镀与涂饰 , 2017, 36(16): 886-889.
[3] 张坤 , 张小勇 , 韩秀台 , 等 . 汽车锁零部件碱性锌镍合金电镀工艺 [J]. 电镀与涂饰 , 2021, 40(3): 187-191.
[4] 李景轩 . 一种新型锌镍合金电镀工艺及镀层的耐蚀性 [J]. 材料保护 , 2018, 51(9): 74-79.
[5] 田伟 , 谢发勤 , 吴向清 . 锌镍合金电镀工艺研究 [J]. 材料保护 , 2008(1): 28-30, 85.
[6] Tozar A, Karahan ? H. Structural and corrosion protection properties of electrochemically deposited nano-sized Zn – Ni alloy coatings[J]. Applied Surface Science, 2014, 318: 15-23.
[7] 李楠 , 江晓禹 . 表面氢对裂纹扩展的影响 [J]. 原子与分子物理学报 , 2023, 40(6): 183-189.
[8] 袁浩 , 李占雷 , 王林森 . 铁素体对奥氏体不锈钢氢脆敏感性机理的研究 [J]. 锅炉技术 , 2022, 53(1): 48-51, 57.
[9] 闫承昭 . 某汽车件锌镍合金电镀、钝化及封闭后的性能 [J]. 材料保护 , 2012, 45(5): 76-77.
[10] 陈怀玉 , 丁运虎 , 黄兴林 , 等 . 不同镀锌体系三价铬钝化膜电化学性能比较 [J]. 材料保护 , 2016, 49( 增 1): 87-89.
[11] 陈春成 . 镀锌层三价铬钝化工艺 [J]. 电镀与精饰 , 2006(2): 26-29.
[12] 李军伟 , 衣守志 , 冯瑞沁 , 等 . 热镀锌板三价铬钝化剂的制备及其钝化膜耐蚀性能 [J]. 表面技术 , 2014, 43(2): 109-113,133.
[13] 石一卉 , 黎德育 , 李宁 . 综述钝化液成分对镀锌层三价铬钝化的影响 [J]. 电镀与涂饰 , 2017, 36(21): 1160-1165.
[14] 李贤成 . 水溶性有机硅金属封闭剂 [J]. 电镀与环保 , 2009, 29(5): 45.
[15] 吴钢 , 李宏 , 喻超 . 酸性锌 - 镍合金镀层与碱性锌 - 镍合金镀层的性能比较 [J]. 电镀与环保 , 2019, 39(2): 22-24.
[16] 赖奂汶 , 郭崇武 , 陈康 . 羟基石墨烯镀层封闭剂的性能研究 [J]. 材料保护 , 2020, 53( 增 1): 1-4.
[17] 郭崇武 . 羟基石墨烯改性封闭剂的制备及其在锌镍合金镀层三价铬钝化后处理中的应用 [J]. 电镀与涂饰 , 2018, 37(7): 310-311.
[18] 郑典模 , 陈创 , 陈骏驰 , 等 . 低浓度环保型硅酸锂水基防锈液的研究 [J]. 无机盐工业 , 2015, 47(7): 32-34.
[19] 蒋乐 . 硅酸锂基有机无机复合涂层的制备与性能研究 [D]. 杭州 : 浙江大学 , 2015.
[20] 陈秋霞 . 硅酸锂水性涂料及耐高温涂料的研究 [D]. 南昌 : 南昌大学 , 2017.
[21] 郑典模 , 陈昕 , 许婷 , 等 . 水性硅酸锂防锈剂的制备研究 [J]. 硅酸盐通报 , 2018, 37(1): 215-220, 224.
[22] 常明 , 武玉洁 , 张海燕 , 等 . 硅氧树脂 Si?O 键伸缩振动模式 ATR 红外光谱研究 [J]. 材料导报 , 2015, 29(16): 67-71.
备注/Memo
收稿日期: 2023-07-27 修回日期: 2023-08-08 作者简介: 俞鼎行( 1998 —),男,硕士研究生, email : 2511417145@qq.com 通信作者: 王振卫,副教授,研究方向:电镀与精饰, email : wangzhenwei@sit.edu.cn