Yu Jie?sup>,Bai Zhongbo,Meng Jianlong?,et al.The influence of high-frequency and high-speed copper foil indicators of different manufacturers on the resistance to peel strength[J].Plating & Finishing,2024,(6):1-7.[doi:10.3969/j.issn.1001-3849.2024.06.001]
不同厂家高频高速铜箔指标对抗剥离强度的影响
- Title:
- The influence of high-frequency and high-speed copper foil indicators of different manufacturers on the resistance to peel strength
- Keywords:
- high-frequency and high-speed electrolytic copper foil ; reversed copper foil ; ultra-low profile copper foil ; peel strength
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 随着 5G 信息技术的不断发展,对 5G 用高频高速电解铜箔提出了更高的要求和更新的规范。目前我国生产的硬板用电解铜箔有反转铜箔( RTF )和超低轮廓铜箔( HVLP )两种,本文主要分别对国内外 6 个不同厂家同一批次的 12 μ m 反转铜箔( 12RTF )与 2 个不同厂家同一批次的 12 μ m 超轮廓铜箔( 12HVLP )随机进行检验,对比了经过粗化的处理面与非处理面的显微形貌、单位面积的铜箔质量、抗拉强度、延伸率、轮廓度、抗剥离强度以及抗氧化等测试数据,并检测了样品的指标达标情况。结果表明: RTF 的剥离强度与粗化层形貌有着直接的联系,同时 HVLP 的剥离强度与轮廓度的增大密切相关,研究结果为生产中改善高频高速铜箔抗剥离性能提供一定的指导依据。
- Abstract:
- : With the continuous development of 5G information technology , higher requirements and newer specifications have been put forward for its high-frequency and high-speed electrolytic copper foil for 5G. At present , there are two types of electrolytic copper foils for hard boards produced in China : reversed copper foil ( RTF ) and ultra-low profile copper foil ( HVLP ) . A batch of reversed copper foil ( 12RTF ) with a thickness of 12 μ m from six different manufacturers at home and abroad and a batch of ultra-low profile copper foil ( 12HVLP ) with a thickness of 12 μ m from two different manufacturers were tested randomly. The microscopic morphology of the coarse-treated and untreated surfaces , copper foil mass per unit area , tensile strength , elongation , roughness , peel strength and oxidation resistance were compared and the samples were tested for compliance. The results showed that the peel strength of RTF was directly related to the appearance of the roughened layer , and the peel strength of HVLP was closely related to the increase of the profile. The research results would provide a certain basis for improving the peel resistance of high-frequency and high-speed copper foil in production.
参考文献/References:
[1] Uno T, Okuno Y, Tsuruta T, et al. Surface-treated copper foil and copper-clad laminate and printed wiring board using same: US, 20200029444A1[P]. 2020-01-23.
[2] 中国有色金属工业协会 . GBT5230 — 2020 印制板用电解铜箔 [S]. 北京 : 中国标准出版社 , 2020.
[3] 魏新启 , 王玉 , 王峰 , 等 . 5G 通讯对 PCB 及高速覆铜板技术要求 [C]// 中国电子材料行业协会覆铜板材料分会、中国电子电路行业协会覆铜板分会 . 第二十二届中国覆铜板技术研讨会论文集 . 2021: 331-344.
[4] 于鹏鹏 , 周国云 , 洪延 , 等 . 印制电路板超薄铜箔表面粗化铜牙结构及制作技术 [J]. 印制电路信息 , 2023, 31(S1): 50-56.
[5] 樊小伟 . 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究 [D]. 赣州 : 江西理工大学 , 2021.
[6] 师慧娟 , 陆冰沪 , 樊小伟 , 等 . 电解铜箔表面处理技术及添加剂研究进展 [J]. 中国有色金属学报 , 2021, 31(5): 1270-1284.
[7] Yamamoto T, Kataoka T, Hirasawa Y, et al. Surface treated copper foil, electrodeposited copper foil with carrier, manufacture method for the electrodeposited copper foil with carrier and copper clad laminate: US, 20030148136 [P]. 2003-08-07.
[8] Woo T G, Park I S, Seol K W. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9(3): 341-345.
[9] Dong Z, Fei X, Gong B, et al. Effects of deep cryogenic treatment on the microstructure and properties of rolled Cu foil[J]. Materials, 2021, 14(19): 54-98.
[10] Kumar R, Wong T K S, Singh N. Dielectric bottom anti-reflective coatings for copper dual damascene interconnects[J]. Microelectronic Engineering, 2004, 71(2): 125-132.
[11] Wang H, Wang Q, Zhang Q, et al. High thermal conductive composite with low dielectric constant and dielectric loss accomplished through flower-like Al 2 O 3 coated BNNs for advanced circuit substrate applications[J]. Composites Science and Technology, 2021, 216(10): 37-56.
[12] Reckinger N, Tang X, Joucken F, et al. Oxidation-assisted graphene heteroepitaxy on copper foil[J]. Nanoscale, 2016, 8(44): 18751-18759.
[13] Pablo A? P, Guillaume S. TREK for high-speed and high-frequency conduction through the axon[J]. Neuron, 2019, 104(5): 831-833.
[14] Ye C, Yang J, Liang X, et al. Design and research of a high-speed and high-frequency pulsed alternator[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1512-1518.
[15] Xiong S, Sun J, Zeng Y, Xu Y, et al. Effects of corrosion inhibitors on lubrication performance of rolling oil for copper foil[J]. China Petroleum Processing & Petrochemical Technology, 2014, 16(2): 1-56.
[16] Wang W, Peng Q, Dai Y, et al. Distinctive nanofriction of graphene coated copper foil[J]. Computational Materials Science, 2016, 117: 406-411.
[17] Khoele K, Ama O M, Ray S S, et al. Tribo-corrosion behavior of bare and nano-coated foils used on high-speed air foil bearings[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 3225-3235.
[18] Moriyama M, Matsunaga K, Morita T, et al. The effect of strain distribution on abnormal grain growth in Cu thin films[J]. Materials Transactions, 2004, 45(10): 3033-3038.
[19] Haifeng Y, Fei X, Yan W, et al. Manufacturing profile-free copper foil using laser shock flattening[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103542.
[20] Ma L, Zhao J, Zhang M, et al. Study on the tribological behaviour of nanolubricants during micro rolling of copper foils[J]. Materials, 2022, 15(7): 2600.
[21] Zander F, Marynowski T, Loehle S. High-speed imaging of high-frequency effects of a CO 2 plasma flow[J]. Journal of Thermophysics and Heat Transfer, 2017, 31(2): 1-12.
[22] Shin H W, Lee H S, Jung S B. Analysis of peel strength of consisting of an aluminum sheet, anodic aluminum oxide and a copper foil laminate composite[J]. Metals & Materials International, 2017, 23(1): 207-213.
备注/Memo
收稿日期: 2023-08-18 修回日期: 2023-10-13 作者简介: 于洁( 1999 —),女,硕士研究生, email : 1515081085@qq.com * 通信作者: 刘二勇( 1982 —), email : liueryong@xust.edu.cn 基金项目: 陕西省重点研发计划项目( 2021SF-469 );国家自然科学基金项目( 52175184 )