PDF下载 分享
 Jiang Lingling *,Lu Yuepeng.VO 2 · x H 2 O nanorods used as cathode materials for aqueous zinc-ion batteries[J].Plating & Finishing,2024,(6):48-54.[doi:10.3969/j.issn.1001-3849.2024.06.007]



[1] 陈修栋 , 柯江南 , 严平 , 等 . 核壳纳米球钴基金属有机聚合物的制备及其储锂性能 [J]. 无机化学学报 , 2022, 38(5): 836-842.

[2] Chen X D, Li Y S, Wang L, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks [J]. Advanced Materials, 2019, 31(26): 1901640.

[3] Jiang M, Danilov D L, Eichel R A. A review of degradation mechanisms and recent achievements for Ni-rich cathode- based Li-ion batteries [J]. Advanced Energy Materials, 2021, 11(48): 2103005.

[4] Chen X D, Yin X J, Aslam J, et al. Recent progress and design principles for rechargeable lithium organic batteries [J]. Electrochemical Energy Reviews, 2022, 5(4): 12.

[5] Chen X D, Zhang H, Liu J H, et al. Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges [J]. Energy Storage Materials, 2022, 50: 21-46.

[6] Chen X D, Zhang H, Gao Y, et al. Zinc-ion hybrid supercapacitors: Design strategies, challenges and perspectives [J]. Carbon Neutralization, 2022, 1(2): 159-188.

[7] Xiong T, Zhang Y X, Lee W S, et al. Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review [J]. Advanced Energy Materials, 2020, 10 (34): 2001769.

[8] Mathew V, Sambandam B, Kim S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable z inc-ion batteries: A focused view on performance, mechanism, and developments [J]. ACS Energy Letter, 2020, 5(7): 2376-2400.

[9] Shi Y C, Chen Y, Shi L, et al. An overview and future perspectives of rechargeable zinc batteries [J]. Small, 2020, 16(23): 2000730.

[10] Du M, Miao Z Y, Li H Z, et al. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion Batteries [J]. Journal of Materials Chemistry A, 2021, 9: 19245-19281.

[11] Wang X, Zhang Z, Huang M, et al. In situ electrochemically activated vanadium oxide cathode for advanced aqueous Zn-ion batteries [J]. Nano Letter, 2022, 22(1): 119-127.

[12] Lu Y Y, Wen Y T, Huang F, et al. Rational design and demonstration of a high-performance flexible Zn/V 2 O 5 battery with thin-film electrodes and para-polybenzimid azole electrolyte membrane [J]. Energy Storage Materials, 2020, 27: 418-425.

[13] Hu X S, Chen X D, Chen Y Y, et al. Synergistic H + /Zn 2+ co-insertion mechanism in vanadium trioxide composited on carbon nanotubes cathode for aqueous zinc ion batteries [J]. Journal of Alloys and Compounds, 2023, 945: 169271.

[14] Chen X D, Hu X S, Chen Y Y, et al. Ultrastable hydrated vanadium dioxide cathodes for high-performance aqueous zinc ion batteries with H +/ Zn 2+ co-insertion mechanism [J]. Journal of Materials Chemistry A, 2022, 10(41): 22194-22204.

[15] Yang M, Ma D T, Mi H W, et al. A unique morphology and interface dualengineering strategy enables the holey C@VO 2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries [J]. Journal of Materials Chemistry A, 2021, 9(13): 8792-8804.

[16] Ding J, Gao H, Zhao K, et al. In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range [J]. Journal Power Sources, 2021, 487: 229369.

[17] Luo H, Wang B, Wu F D, et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics [J]. Nano Energy, 2021, 81: 105601.

[18] 陈修栋 , 简佳琴 , 严平 , 等 . 双金属有机骨架衍生的 Fe-CrSe/C 负极材料制备及储锂性能 [J]. 无机化学学报 , 2022, 38(9): 1752-1758.


收稿日期: 2023-12-31 修回日期: 2024-01-26 * 通信作者: 蒋玲玲( 1982 —),女,硕士研究生,讲师,主要从事电力电子与电力传动,智能发电方面的研究, email : JiangLingling1233@126.com 基金项目: 安徽省教育厅科学研究重点项目( 2023AH051157 )

更新日期/Last Update: 2024-06-05