YAN Chenxi,SONG Juanjuan,CAO Jianping,et al.Preparation and Properties of Perhydropolysilazane Coating[J].Plating & Finishing,2019,(7):14-19.[doi:10.3969/j.issn.1001-3849.2019.07.004]
全氢聚硅氮烷涂层制备及其性能
- Title:
- Preparation and Properties of Perhydropolysilazane Coating
- Keywords:
- perhydropolysilazane(PHPS); coating; contact angle; mechanical properties; corrosion resistance
- 文献标志码:
- A
- 摘要:
- 以重复单元为-(SiH2NH)-的全氢聚硅氮烷(PHPS)前驱体溶液为原料,采用水汽固化方式制备新型低表面能防护涂层。通过接触角测试、硬度及附着力等力学性能试验研究了 PHPS固化过程中温度与时间对涂层性能的影响。使用傅里叶红外光谱仪(FTIR)与扫描电镜(SEM)对PHPS涂层化学结构以及微观形貌进行表征观察,并通过动电位极化曲线研究了最佳工艺制备的涂层的耐蚀性能。研究表明,温度200 ℃、时间2 h为PHPS水汽固化的最佳工艺参数。在温度200 ℃、时间2 h固化制备的PHPS涂层表面平整致密,无明显缺陷且与基体结合良好,PHPS涂层接触角最大为105 °,计算得出其表面自由能为18.74 mN·m-1,涂层硬度达到9 H,附着力等级达到0级。由动电位极化曲线可知,浸泡48 h后涂层的电流密度为2.136×10-7 A·cm-2,基体的电流密度为1.336×10-4 A·cm-2,腐蚀电流密度大大降低,涂层保护效率高达99.84 %。
- Abstract:
- A new low-surface energy protective coating was prepared by vapor-solidification using a perhydropolysilazane (PHPS) precursor solution with a repeating unit of -(SiH2NH)- as a raw material. The effects of temperature and time on the performance of the PHPS coating during the curing process were investigated by contact angle tests, mechanical properties tests such as hardness and adhesion. The chemical structure and morphology of the PHPS coating were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The corrosion resistance of the coating prepared by the best process was studied by the potentiodynamic polarization curve. The results showed that the best process parameters were temperature of 200 ℃ and time of 2 h for PHPS curing. The surface of the PHPS coating prepared by curing at 200 ℃ for 2 h was flat and compact, without obvious defects and well bonded to the substrate. The maximum contact angle of the PHPS coating was 105 °, and the surface free energy was calculated to be 18.74 mN·m-1, the hardness of the coating was 9 H and the adhesion grade reached 0. According to the dynamic potential polarization curve, the current density of the coating after immersion for 48 h was 2.136×10-7 A·cm-2 and the current density of the substrate was 1.336×10-4 A·cm-2. The corrosion current density was greatly reduced and PHPS coating protection efficiency was up to 99.84 %.
参考文献/References:
[1] 郑利云, 曹发和, 刘文娟, 等. Q235钢在模拟自然环境下失效行为的电化学研究[J]. 装备环境工程, 2011, 08(4): 8-15.
[2] 远立贤. 金属/陶瓷功能梯度涂层工艺的应用现状[J]. 金属热处理, 1999, (1): 30-34.
[3] 张宗波, 肖凤艳, 罗永明, 等. 全氢聚硅氮烷(PHPS)涂层材料研究进展[J]. 涂料工业, 2013, 43(4): 74-79.
[4] Hu L F, Li M S, Xu C H, et al. Perhydropolysilazane derived silica coating protecting kapton from atomic oxygen attack[J]. Thin Solid Films, 2011, 520(3): 1063-1068.
[5] Blankenburg L, Schrodner M. Perhydropolysilazane derived silica for flexible transparent barrier foils using a reel-to-reel wet coating technique: Single and multilayer structures[J]. Surface & Coatings Technology, 2015, 275: 193-206.
[6] 梁倩影, 赵莉, 孙宁, 等. 全氢聚硅氮烷用于塑料表面硬化涂层的研究进展[J]. 表面技术, 2018, 47(05): 105-111.
[7] 方庆玲, 李效东, 李义和, 等. 由光敏性全氢聚硅氮烷制备透明高硬Si-O微/纳米结构压印模板[J]. 高分子学报, 2012, 1: 56-62.
[8] 梁倩影, 张宗波, 黄文文, 等. 全氢聚硅氮烷衍生法制备耐高温抗氧化SiON涂层[J]. 涂料工业, 2017, 47(7): 1-5.
[9] Song J J, Wang D R, Hu L Y, et al. Superhydrophobic surface fabricated by nanosecond laser and perhydropolysilazane[J]. Applied Surface Science, 2018, 455:771-779.
[10] Kim S D, Ko P S, Park K S. Perhydropolysilazane spin-on dielectrics for inter-layer-dielectric applications of sub-30 nm silicon technology[J]. Semiconductor Science and Technology, 2013, 28(3): 035008.
[11] Saito R, Hosoya T. Water vapor barrier property of organic-silica nanocomposite derived from perhydropolysilazane on polyvinyl alcohol substrate[J]. Polymer, 2008, 49(21): 4546-4551.
[12] Morlier A, Cros S, Garandet J P, et al. Gas barrier properties of solution processed composite multilayer structures for organic solar cells encapsulation[J]. Solar Energy Materials and Solar Cells, 2013, 115: 93-99.
[13] 肖凤艳, 张宗波, 曾凡, 等. 全氢聚硅氮烷制备SiOx 涂层及其性能研究[J]. 稀有金属材料与工程, 2013, (s1): 150-153.
[14] 齐共金, 张长瑞, 胡海峰, 等. 全氢聚硅氮烷浸渍裂解法制备高性能3DSiO2/Si3N4复合材料[J]. 中国科学:技术科学, 2005, 35(11): 1121-1126.
[15] Brand S, Dierdorf A, Liebe H, et al. Use of polysilazanes for coating metal strips[P]. US 8247037, 2008-01-04.
[16] Brand S, Dierdorf A, Liebe H, et al.. Coatings comprisings polysilazane for preventing scaling and corrosion[P]. US 0014461, 2009-04-16.
[17] 中国国家标准化管理委员会. 色漆和清漆铅笔法测定漆膜硬度: GB/T6739-2006[S]. 北京:中国标准出版社, 2007.
[18] 国家质量技术监督局. 色漆和清漆漆膜的划格试验:GB/T9286-1998[S]. 北京: 中国标准出版社, 1999.
[19] Larmour I A, Saunders G C, Bell S E J. Compressed metal powders that remain superhydrophobic after abrasion[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2703-2706.
[20] Graubner V M, Jordan R, Nuyken O, et al. Photochemical modification of cross-linked poly (dimethylsiloxane) by irradiation at 172 nm[J]. Macromolecules, 2004, 37(16): 5936-5943.
[21] Matsunaga T, Ikada Y. Dispersive component of surface free energy of hydrophilic polymers[J]. Journal of Colloid and Interface Science, 1981, 84(1): 8-13.
[22] Yan X B, Xu T, Yue S S, et al. Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor[J]. Diamond and related materials, 2005, 14(8): 1342-1347.
[23] Bal J K, Kundu S, Hazra S. Hydrophobic to hydrophilic transition of HF-treated Si surface during Langmuir-Blodgett film deposition[J]. Chemical Physics Letters, 2010, 500(1-3): 90-95.
[24] 邵中华. 全氢聚硅氮烷的改性研究[D]. 哈尔滨:哈尔滨理工大学, 2015.
[25] Zhang Z B, Shao Z H, Luo Y M, et al. Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane[J]. Polymer International, 2015, 64(8): 971-978.
[26] 戴亮, 林志峰, 朱兴元, 等. 氟碳/石墨烯复合涂层的耐蚀性能研究[J]. 电镀与精饰, 2018, 40(8): 11-17.
相似文献/References:
[1]祁怀伟*,吴心元,王亮兵,等.镀层和涂层的抗霉菌研究进展[J].电镀与精饰,2021,(3):41.[doi:10.3969/j.issn.1001-3849.2021.03.009]
QI Huaiwei*,WU Xinyuan,WANG Liangbing,et al.祁怀伟*,吴心元,王亮兵,徐涛涛[J].Plating & Finishing,2021,(7):41.[doi:10.3969/j.issn.1001-3849.2021.03.009]
[2]王春兰,谢燕婷,王兴灿?,等.管道阴极保护与外涂层相互影响的研究进展[J].电镀与精饰,2021,(8):59.[doi:10.3969/j.issn.1001-3849.2021.08.013]
WANG Chunlan,XIE Yanting,WANG Xingcan?,et al.Research Progress on the Interaction Between Cathodic Protection and Outer Coating of Pipeline[J].Plating & Finishing,2021,(7):59.[doi:10.3969/j.issn.1001-3849.2021.08.013]
[3]张锦园,张菁丽,白忠波,等.电解铜箔用钛阳极涂层的研究现状[J].电镀与精饰,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
Zhang Jinyuan,Zhang Jingli,Bai Zhongbo,et al.Research status of titanium anode coating for electrolytic copper foil[J].Plating & Finishing,2023,(7):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
[4]钟志坚*,刘 超,李 畅.汽车用镁合金的表面改性及耐蚀性能研究[J].电镀与精饰,2024,(7):15.[doi:10.3969/j.issn.1001-3849.2024.07.003]
Zhong Zhijian*,Liu Chao,Li Chang.Study on surface modification and corrosion resistance of magnesium alloy for automobile[J].Plating & Finishing,2024,(7):15.[doi:10.3969/j.issn.1001-3849.2024.07.003]
[5]刘敬春*,赵子晔,赵建国,等.AZ31B镁合金表面电化学沉积LDH涂层及其耐腐蚀性能研究[J].电镀与精饰,2024,(7):22.[doi:10.3969/j.issn.1001-3849.2024.07.004]
Liu Jingchun*,Zhao Ziye,Zhao Jianguo,et al.The corrosion resistance of LDH coatings constructed via electrodeposition technique on AZ31B[J].Plating & Finishing,2024,(7):22.[doi:10.3969/j.issn.1001-3849.2024.07.004]
[6]牛 超*,王科锋,李 恒,等.基于PLC控制的Q345钢表面激光熔覆涂层制备与性能研究[J].电镀与精饰,2024,(9):56.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.008]
Niu Chao,Wang Kefeng,Li Heng,et al.Preparation and property of laser cladding coating on Q345 steel surface based on PLC control[J].Plating & Finishing,2024,(7):56.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.008]
[7]耿 城*,晁铁彦,葛玉伟,等.doi: 10.3969/j.issn.1001-3849.2025.01.014 公路边坡锚固用钢表面涂层的热处理与耐蚀耐磨性能[J].电镀与精饰,2025,(01):91.
Geng Cheng *,Chao Tieyan,Ge Yuwei,et al.Heat treatment and corrosion & wear resistance of steel surface coatings for anchoring highway slopes[J].Plating & Finishing,2025,(7):91.
备注/Memo
收稿日期: 2019-01-23;修回日期: 2019-03-06