LI Yongheng,CHEN Jie,LIU Chengshi,et al.Progress in Hydrogen Preparation Technology[J].Plating & Finishing,2019,(10):22-27.[doi:10.3969/j.issn.1001-3849.2019.10.006]
氢气制备技术的研究进展
- Title:
- Progress in Hydrogen Preparation Technology
- Keywords:
- energy; hydrogen; hydrogen production from water; water electrolysis
- 文献标志码:
- A
- 摘要:
- 氢气作为一种清洁、无污染、燃烧热值高的新型能源,是目前新能源的研究热点之一,因而研究氢气的制备对未来有着巨大的影响。本文系统的介绍了目前各类制氢方法的现状以及它们的优缺点,着重介绍电解水制氢的途径和思路,囊括了碱性电解水制氢、PEM电解水制氢和固体氧化物电解水制氢的原理,指出它们现存的瓶颈问题及改进方法,并对未来制氢和氢能源的发展进行了展望。
- Abstract:
- As a clean, non-polluting and high calorific value new energy source, hydrogen is one of the research hotspots of new energy at present. Therefore, the preparation of hydrogen has a great impact on the future. In this paper, various hydrogen production methods and their advantages and disadvantages are introduced systematically and the ways and ideas of hydrogen production from water electrolysis are emphatically suggested, including the principles of hydrogen production from alkaline electrolysis water, PEM electrolysis water and solid oxide electrolysis water. The existing bottlenecks and improvement methods are pointed out and the future development of hydrogen production and hydrogen energy is prospected.
参考文献/References:
[1] Nasir M N, Wan A M, et al. Technological diversity and economics: Coupling effects on hydrogen production[J]. Energy & Fuels, 2014, 28(7): 4300-4320.
[2] 潘致宇. 过渡金属基电催化析氢材料的研究进展[J]. 当代化工研究, 2019, 2: 143-144.
[3] 王利超, 曹爽, 郭凯, 等. 光催化分解水制备氢气和过氧化氢[J]. 催化学报, 2019, 40(3): 470-475.
[4] Bajus S, Agel F, Kusche, et al. Alkali hydroxide-modified Ru/ gamma-Al2O3 catalysts for am-monia decomposition[J]. Applied Catalysis A-General, 2016, 510: 189-195.
[5] 张婧, 张铁, 孙峰, 等. 硫化氢直接分解制取氢气和硫黄研究进展[J]. 化工进展, 2017, 36(4): 1448-1459.
[6] 丁建军. 微生物厌氧转化生物质产氢产电研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2018.
[7] Kato Y, Yamamoto M, Ozawa A, et al. Preparation of visible-light-responsive photo-catalyst by dehydronitrization of gallium oxide hydroxide for hydrogen evolution from water[J]. Applied Catalysis B-Environmental, 2019, 250: 112-116.
[8] Byrne J, Dunlop P, Hamilton J, et al. A review of heterogeneous photocatalysis for water and surface disinfection[J]. Molecules, 2015, 20: 5574.
[9] 朱俏俏, 程纪华. 氢能制备技术研究进展[J]. 石油石化节能, 2015, 12: 51-54.
[10] 薛鹤. 含氧有机物催化重整制备纯氢的研究[D]. 合肥: 中国科学技术大学, 2016.
[11] 鲍君香. 太阳能制氢技术进展[J]. 能源与节能, 2018, 11: 61-63.
[12] Wei Q Y, Yang Y, Liu H J, et al. Experimental study on direct solar photocata-lytic water splitting for hydrogen production using surface uniform concentrators[J]. International Journal of Hydrogen Energy, 2018, 43(30): 13745-13753.
[13] Chen Y B, Feng X Y, Guo X, et al. Toward a fundamental understanding of factors affecting the function of cocatalysts in photocatalytic water splitting[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 21-28.
[14] 邹松华, 王帅东, 郑玉杰, 等. 扩渗温度对TiO2 NTs/ TC4光催化制氢性能的影响[J]. 电镀与精饰, 2016, 38(7): 4-8.
[15] Lo C C, Huang C W, Liao C H, et al. Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2010, 35 (4): 1523-1529.
[16] Yang Y, Wei Q, Liu H, et al. Optimization of the radiation absorption for a scaled-up photocatalytic hydrogen production system[J]. Sol Energy, 2018, 160: 168-177.
[17] Guo L J, Chen Y B, Su J Z, et al. Obstacles of solar-powered photocatalytic water splitting for hydro-gen production: A perspective from energy flow and mass flow[J]. Energy, 2019, 172: 1079-1086.
[18] Hu X, Cao Z, Wang Y, et al. Single photogenerated bubble at gas-evolving TiO2 nanorod-array electrode[J]. Electrochim Acta, 2016, 202: 175-185.
[19] Nur F, Muhammad T. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(2): 540-577.
[20] Pu Y C, Kibria M, Mi Z, et al. Ultrafast exciton dynamics in InGaN/GaN and Rh/Cr2O3 nanoparticle-decorated InGaN/ GaN nanowires[J]. Physical Chemistry Letters, 2015, 6(13): 2649-2656.
[21] Chen Q, Luo L, Faraji H, et al. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes[J]. Physical Chemistry Letters, 2014, 5(20): 3539-3544.
[22] 葛玉振, 林丽利, 姚思宇, 等. 适用于氢气低温制备与高效存储的催化新体系[J]. 科学通报, 2018, 63(21), 2140-2147.
[23] Toledo, Mario, González, et al. Hydrogen production from methanol and ethanol partial oxidation[J]. Energy & Fuels, 2014, 28(5): 3453-3459.
[24] 邱书伟, 任铁真, 李珺. 氨分解制氢催化剂改性研究进展[J]. 化工进展, 2018, 37(3): 1001-1007.
[25] Garcia F R, Rodriguez J, Ramos I, et al. The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction[J]. Carbon, 2010, 48(1): 267-276.
[26] Ji J, Duan X Z, Qian G, et al. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition[J]. Catalysis Today, 2013, 216(11): 254-260.
[27] 谢广文, 王丽娜, 李忠. 硼氢化钠水解制氢金属催化剂的研究进展[J]. 青岛科技大学学报(自然科学版), 2015, 36(1): 1-9.
[28] 刘芸. 绿色能源氢能及其电解水制氢技术进展[J]. 电源技术, 2012, 36(10): 1579-1581.
[29] Alexander B, Hartmut S. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 2440-2454.
[30] 瞿丽莉, 郭俊文, 史亚丽, 等. 质子交换膜电解水制氢技术在电厂的应用[J]. 热能动力工程, 2019, 34(2): 150-156.
[31] Rostrup J R, Sehested J, Norskov J K. Hydrogen and synthesis gas by steamand CO2 reforming[J]. Advances in Catalysis, 2002, 47: 65-139.
[32] Debe M K, Hendricks S M, Vernstrom G D, et al. Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers[J]. Journal of The Electrochem Society, 2012, 159(6): 165-176.
[33] Trasatti S. Water electrolysis: Who first[J]. Journal of Electroanalytical Chemistry, 1999, 476(1): 90-91.
备注/Memo
收稿日期: 2019-06-12;修回日期: 2019-07-18
通讯作者: 李菲晖,女,博士,副教授,研究方向为电化学,Email:tjlifeihui@tjcu.edu.cn
基金项目: 天津市教委备案项目(160020),国家自然科学基金项目(51802222),天津市科学技术委员会项目(18JCTPJC67300)