PDF下载 分享
[1]李永恒,陈 洁,刘城市,等.氢气制备技术的研究进展[J].电镀与精饰,2019,(10):22-27.[doi:10.3969/j.issn.1001-3849.2019.10.006]
 LI Yongheng,CHEN Jie,LIU Chengshi,et al.Progress in Hydrogen Preparation Technology[J].Plating & Finishing,2019,(10):22-27.[doi:10.3969/j.issn.1001-3849.2019.10.006]
点击复制

氢气制备技术的研究进展

参考文献/References:

[1] Nasir M N, Wan A M, et al. Technological diversity and economics: Coupling effects on hydrogen production[J]. Energy & Fuels, 2014, 28(7): 4300-4320.
[2] 潘致宇. 过渡金属基电催化析氢材料的研究进展[J]. 当代化工研究, 2019, 2: 143-144.
[3] 王利超, 曹爽, 郭凯, 等. 光催化分解水制备氢气和过氧化氢[J]. 催化学报, 2019, 40(3): 470-475.
[4] Bajus S, Agel F, Kusche, et al. Alkali hydroxide-modified Ru/ gamma-Al2O3 catalysts for am-monia decomposition[J]. Applied Catalysis A-General, 2016, 510: 189-195.
[5] 张婧, 张铁, 孙峰, 等. 硫化氢直接分解制取氢气和硫黄研究进展[J]. 化工进展, 2017, 36(4): 1448-1459.
[6] 丁建军. 微生物厌氧转化生物质产氢产电研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2018.
[7] Kato Y, Yamamoto M, Ozawa A, et al. Preparation of visible-light-responsive photo-catalyst by dehydronitrization of gallium oxide hydroxide for hydrogen evolution from water[J]. Applied Catalysis B-Environmental, 2019, 250: 112-116.
[8] Byrne J, Dunlop P, Hamilton J, et al. A review of heterogeneous photocatalysis for water and surface disinfection[J]. Molecules, 2015, 20: 5574.
[9] 朱俏俏, 程纪华. 氢能制备技术研究进展[J]. 石油石化节能, 2015, 12: 51-54.
[10] 薛鹤. 含氧有机物催化重整制备纯氢的研究[D]. 合肥: 中国科学技术大学, 2016.
[11] 鲍君香. 太阳能制氢技术进展[J]. 能源与节能, 2018, 11: 61-63.
[12] Wei Q Y, Yang Y, Liu H J, et al. Experimental study on direct solar photocata-lytic water splitting for hydrogen production using surface uniform concentrators[J]. International Journal of Hydrogen Energy, 2018, 43(30): 13745-13753.
[13] Chen Y B, Feng X Y, Guo X, et al. Toward a fundamental understanding of factors affecting the function of cocatalysts in photocatalytic water splitting[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 21-28.
[14] 邹松华, 王帅东, 郑玉杰, 等. 扩渗温度对TiO2 NTs/ TC4光催化制氢性能的影响[J]. 电镀与精饰, 2016, 38(7): 4-8.
[15] Lo C C, Huang C W, Liao C H, et al. Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2010, 35 (4): 1523-1529.
[16] Yang Y, Wei Q, Liu H, et al. Optimization of the radiation absorption for a scaled-up photocatalytic hydrogen production system[J]. Sol Energy, 2018, 160: 168-177.
[17] Guo L J, Chen Y B, Su J Z, et al. Obstacles of solar-powered photocatalytic water splitting for hydro-gen production: A perspective from energy flow and mass flow[J]. Energy, 2019, 172: 1079-1086.
[18] Hu X, Cao Z, Wang Y, et al. Single photogenerated bubble at gas-evolving TiO2 nanorod-array electrode[J]. Electrochim Acta, 2016, 202: 175-185.
[19] Nur F, Muhammad T. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(2): 540-577.
[20] Pu Y C, Kibria M, Mi Z, et al. Ultrafast exciton dynamics in InGaN/GaN and Rh/Cr2O3 nanoparticle-decorated InGaN/ GaN nanowires[J]. Physical Chemistry Letters, 2015, 6(13): 2649-2656.
[21] Chen Q, Luo L, Faraji H, et al. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes[J]. Physical Chemistry Letters, 2014, 5(20): 3539-3544.
[22] 葛玉振, 林丽利, 姚思宇, 等. 适用于氢气低温制备与高效存储的催化新体系[J]. 科学通报, 2018, 63(21), 2140-2147.
[23] Toledo, Mario, González, et al. Hydrogen production from methanol and ethanol partial oxidation[J]. Energy & Fuels, 2014, 28(5): 3453-3459.
[24] 邱书伟, 任铁真, 李珺. 氨分解制氢催化剂改性研究进展[J]. 化工进展, 2018, 37(3): 1001-1007.
[25] Garcia F R, Rodriguez J, Ramos I, et al. The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction[J]. Carbon, 2010, 48(1): 267-276.
[26] Ji J, Duan X Z, Qian G, et al. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition[J]. Catalysis Today, 2013, 216(11): 254-260.
[27] 谢广文, 王丽娜, 李忠. 硼氢化钠水解制氢金属催化剂的研究进展[J]. 青岛科技大学学报(自然科学版), 2015, 36(1): 1-9.
[28] 刘芸. 绿色能源氢能及其电解水制氢技术进展[J]. 电源技术, 2012, 36(10): 1579-1581.
[29] Alexander B, Hartmut S. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 2440-2454.
[30] 瞿丽莉, 郭俊文, 史亚丽, 等. 质子交换膜电解水制氢技术在电厂的应用[J]. 热能动力工程, 2019, 34(2): 150-156.
[31] Rostrup J R, Sehested J, Norskov J K. Hydrogen and synthesis gas by steamand CO2 reforming[J]. Advances in Catalysis, 2002, 47: 65-139.
[32] Debe M K, Hendricks S M, Vernstrom G D, et al. Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers[J]. Journal of The Electrochem Society, 2012, 159(6): 165-176.
[33] Trasatti S. Water electrolysis: Who first[J]. Journal of Electroanalytical Chemistry, 1999, 476(1): 90-91.

备注/Memo

收稿日期: 2019-06-12;修回日期: 2019-07-18
通讯作者: 李菲晖,女,博士,副教授,研究方向为电化学,Email:tjlifeihui@tjcu.edu.cn
基金项目: 天津市教委备案项目(160020),国家自然科学基金项目(51802222),天津市科学技术委员会项目(18JCTPJC67300)

更新日期/Last Update: 2019-10-10