WANG Danjing*,LI jingkui,SUN Wei.Study on Phosphating Treatment and Corrosion Resistance of Screw-Thread Steel Used in Frame Structure[J].Plating & Finishing,2021,(6):15-19.[doi:10.3969/j.issn.1001-3849.2021.06.004]
框架结构用螺纹钢磷化处理及耐蚀性研究
- Title:
- Study on Phosphating Treatment and Corrosion Resistance of Screw-Thread Steel Used in Frame Structure
- 文献标志码:
- A
- 摘要:
- 选取框架结构使用的螺纹钢作为试样,采用传统高温锰系磷化工艺和改进的中温锌系磷化工艺分别进行锰系磷化处理、锌系磷化处理,并比较了不同工艺磷化处理后螺纹钢的形貌、成分和耐蚀性。结果表明:锰系磷化处理和锌系磷化处理后螺纹钢的外观不同,但锰系磷化膜和锌系磷化膜都较致密。锰系磷化膜的成分Mn、P、O、Fe和C元素,锌系磷化膜的成分为Zn、P、O和C元素。锰系磷化处理和锌系磷化处理都能明显提高螺纹钢的耐蚀性,锰系磷化膜和锌系磷化膜都具有较好的防护作用。改进的中温锌系磷化工艺与传统高温锰系磷化工艺的防腐蚀效果相差不大,表明改进的中温锌系磷化工艺替代传统高温锰系磷化工艺具有可行性,可以用于框架结构用螺纹钢表面处理,在满足节能减排要求的同时,有效提高螺纹钢的耐蚀性。
- Abstract:
- The screw-thread steel used in frame structure was selected as the sample, and it was treated by the traditional high-temperature manganese phosphating process and the improved medium-temperature zinc phosphating process respectively. The morphology, components and corrosion resistance of screw-thread steel treated by different phosphating process were investigated. The results showed that manganese phosphating film was composed of Mn, P, O, Fe and C elements, while zinc phosphating film was composed of Zn, P, O and C elements. Both manganese phosphating treatment and zinc phosphating treatment can obviously improve the corrosion resistance of rebar, manganese series phosphating film and zinc series phosphating film had a better protective effect on screw-thread steel, and both manganese phosphating film and zinc phosphating film had good protective effect. The anti-corrosion effect of the improved medium-temperature zinc phosphating process was equivalent to that of the traditional high-temperature manganese phosphating process, which indicated that the improved medium-temperature zinc phosphating process was feasible to replace the traditional high-temperature manganese phosphating process. The improved medium-temperature zinc phosphating process can be used for surface treatment of the screw-thread steel used in frame structure to improve its corrosion resistance while meeting the requirements of energy saving and emission reduction.
参考文献/References:
[1] 蒋小平. 谈对建筑框架结构设计的认识[J]. 城市建设理论研究, 2014, (22): 838-839.
Jiang X P. Understanding of architectural frame structure design[J]. Urban Construction Theory Research, 2014, (22): 838-839 (in Chinese).
[2] 孙鸽, 张运楚, 赵月, 等.基于机器视觉的螺纹钢表面缺陷检测方法[J]. 计算机系统应用, 2020, 29(4): 32-40.
Sun G, Zhang Y C, Zhao Y, et al.A method for surface defect detection of rebar based on machine vision[J]. Computer Systems & Applications, 2020, 29(4): 32-40 (in Chinese).
[3] Rodionova I G, Amezhnov A V, Yakonov D L, et al.Study of the effect of microstructure characteristics on corrosion resistance of cold-rolled micro-alloyed sheet steels (hsla) of strength classes 340-420 for automobile building [J]. Metallurgist, 2020, (63): 1165-1177.
[4] Alberto S R, Hector P M, Eduardo A G, et al. Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel [J]. Surface and Coatings Technology, 2018, (339): 191-198.
[5] 梁小育.高温磷化的工艺研究及其发展趋势展望[J]. 科技传播, 2013, (8): 108.
Liang X Y. Research and development trend of high temperature phosphating [J]. Public Communication of Science & Technology, 2013, (8): 108 (in Chinese).
[6] Duszczyk J, Siuzdak K, Klimczuk T, et al. Manganese phosphatizing coatings: the effects of preparation conditions on surface properties[J]. Materials,2018,11(12):2585.
[7] 张瑞. 金属磷化处理技术的研究进展[J]. 洛阳师范学院学报, 2009, 28(5): 81-84.
Zhang R. Research on progress of metal phosphorizing technology[J]. Journal of Luoyang Normal University,2009, 28(5): 81-84 (in Chinese).
[8] Ariyoshi K, Mizutani S, Yamada Y. Electrochemical impedance analysis of Li[Li0.1Al0.1Mn1.8]O4 used as lithium-insertion electrodes by the diluted electrode method[J]. Journal of Power Sources, 2019, (435): 226-236.
[9] Liu Q, Zhao Z, Wu F, et al. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Solid State Ionics, 2019, (337): 107-114.
[10] 王灿.模拟海洋环境应力对管线钢腐蚀行为的影响研究[D]. 天津: 天津大学, 2016.
[11] Venugopal A, Panda R, Manwatkar S, et al.Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution [J]. Transactions of Nonferrous Metals Society of China,2012, (3): 700-710.
[12] 景红, 王迪. 带破损氧化石墨烯改性环氧树脂涂层的X80钢在NaCl溶液中的局部腐蚀规律[J]. 腐蚀与防护,2019, 40(2): 126-130.
Jing H, Wang D.Localized corrosion regularities of X80 steel covered with damaged GO modified epoxy coating in NaCl solution[J]. Corrosion and Protection, 2019, 40(2): 126-130 (in Chinese).
相似文献/References:
[1]宿 辉,栾柏瑞.AZ91D镁合金表面无铬无氟前处理工艺研究[J].电镀与精饰,2019,(1):10.[doi:10.3969/j.issn.1001-3849.2019.01.003]
XU Hui,LUAN Bairui.Study on Chromium?Free and Fluorine?Free PretreatmentProcess of AZ91D Magnesium Alloy[J].Plating & Finishing,2019,(6):10.[doi:10.3969/j.issn.1001-3849.2019.01.003]
[2]徐美玲,亢淑梅,陈婷婷,等.添加氯化铈对镁合金Ni?P化学镀镀层性能影响[J].电镀与精饰,2019,(1):37.[doi:10.3969/j.issn.1001-3849.2019.01.008]
XU Meiling,KANG Shumei,CHEN Tingting,et al.Properties of Electroless Plating Ni?P on Magnesium AlloySubstrate by Adding CeCl3[J].Plating & Finishing,2019,(6):37.[doi:10.3969/j.issn.1001-3849.2019.01.008]
[3]刘军松,刘定富,苏 琪,等.有机添加剂对电镀Zn-Ni-P合金的影响[J].电镀与精饰,2019,(7):6.[doi:10.3969/j.issn.1001-3849.2019.07.002]
LIU Junsong,LIU Dingfu,SU Qi,et al.Effect of Organic Additives on Zn-Ni-P Alloy Electroplating[J].Plating & Finishing,2019,(6):6.[doi:10.3969/j.issn.1001-3849.2019.07.002]
[4]颜晨曦,宋娟娟,曹建平,等.全氢聚硅氮烷涂层制备及其性能[J].电镀与精饰,2019,(7):14.[doi:10.3969/j.issn.1001-3849.2019.07.004]
YAN Chenxi,SONG Juanjuan,CAO Jianping,et al.Preparation and Properties of Perhydropolysilazane Coating[J].Plating & Finishing,2019,(6):14.[doi:10.3969/j.issn.1001-3849.2019.07.004]
[5]姚知深,牛宗伟*,刘 斌,等.超声振动对65钢电解磷化膜表面形貌与耐蚀性的影响[J].电镀与精饰,2019,(9):24.[doi:10.3969/j.issn.1001-3849.2019.09.005]
YAO Zhishen,NIU Zongwei*,LIU Bin,et al.Effect of Ultrasonic Vibration on Surface Morphology and Corrosion Resistance of 65 Steel Electrolytic Phosphating Film[J].Plating & Finishing,2019,(6):24.[doi:10.3969/j.issn.1001-3849.2019.09.005]
[6]李佳霖,郝建军,牟世辉.Fe2+对镁合金电化学磷化改性研究[J].电镀与精饰,2019,(10):1.[doi:10.3969/j.issn.1001-3849.2019.10.001]
LI Jialin,HAO Jianjun,MOU Shihui.Study on Electrochemical Phosphating Modification of Magnesium Alloy by Fe2+[J].Plating & Finishing,2019,(6):1.[doi:10.3969/j.issn.1001-3849.2019.10.001]
[7]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(6):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[8]贾启华,许晓娟*.沉积时间对镁合金化学镀镍的影响[J].电镀与精饰,2019,(12):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
JIA Qihua,XU Xiaojuan*.Effect of Deposition Time on Direct Electroless Plating of Magnesium Alloys[J].Plating & Finishing,2019,(6):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
[9]李 博*,赵金航,肖细军.电镀锌-镍合金替代镀镉、镀镉-钛工艺研究[J].电镀与精饰,2020,(3):43.[doi:10.3969/j.issn.1001-3849.2020.03.009]
LI Bo*,ZHAO Jinhang,XIAO Xijun.Process Research on Electroplating of Zinc-Nickel Alloy Instead of Cadmium Plating and Cadmium-Titanium Plating[J].Plating & Finishing,2020,(6):43.[doi:10.3969/j.issn.1001-3849.2020.03.009]
[10]黄章崎,石海明,朱惠文,等.可溶性镍阳极对电镀镍性能的影响[J].电镀与精饰,2020,(6):1.[doi:10.3969/j.issn.1001-3849.2020.06.0010]
HUANG Zhangqi,SHI Haiming,ZHU Huiwen,et al.Effect of Soluble Nickel Anode on the Performance of Electroplated Nickel[J].Plating & Finishing,2020,(6):1.[doi:10.3969/j.issn.1001-3849.2020.06.0010]
备注/Memo
收稿日期: 2020-11-05;修回日期: 2021-01-04
通信作者: 王丹净(1977-),博士在读,副教授,工程师。email:wang_214000@126.com
基金项目: 十三五国家重大研发计划