PDF下载 分享
[1]何天翊,郭旭丽,李小丽,等. 三维石墨烯的制备及其应用 [J].电镀与精饰,2023,(9):42-48.[doi:10.3969/j.issn.1001-3849.2023.09.007]
 He Tianyi,Guo Xuli,Li Xiaoli,et al.Preparation and application of three-dimensional graphene[J].Plating & Finishing,2023,(9):42-48.[doi:10.3969/j.issn.1001-3849.2023.09.007]
点击复制

三维石墨烯的制备及其应用

参考文献/References:



[1] Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.

[2] Wang Z, Gao H, Zhang Q, et al. Recent advances in 3d graphene architectures and their composites for energy storage applications[J]. Small, 2019, 15(3): 1803858.

[3] Mu Y, Han M, Li J, et al. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries[J]. Carbon, 2021, 173: 477-484.

[4] Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of pegylated graphene in mice[J]. ACS Nano, 2011, 5(1): 516-522.

[5] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.

[6] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.

[7] Wu Y, Yi N, Huang L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio[J]. Nature Communications, 2015, 6(1): 1-9.

[8] Pham H D, Pham V H, Cuong T V, et al. Synthesis of the chemically converted graphene xerogel with superior electrical conductivity[J]. Chemical Communications, 2011, 47(34): 9672-9674.

[9] Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide composite hydrogel[J]. Chemical Communications, 2010, 46(14): 2376-2378.

[10] Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941.

[11] Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24(30): 4144-4150.

[12] Wang X, Zhang Y, Zhi C, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4(1): 1-8.

[13] Sheng K, Sun Y, Li C, et al. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J]. Scientific Reports, 2012, 2(1): 1-5.

[14] Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics[J]. Molecular Pharmaceutics, 2015, 12(11): 4077-4084.

[15] Cao K, Wu M, Bai J, et al. Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range[J]. Advanced Functional Materials, 2022, 32(28): 2202360.

[16] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.

[17] Shi L, Chen K, Du R, et al. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation[J]. Journal of the American Chemical Society, 2016, 138(20): 6360-6363.

[18] Yao H B, Ge J, Wang C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46): 6692-6698.

[19] Yang L, Wang Z, Ji Y, et al. Highly ordered 3d graphene-based polymer composite materials fabricated by "particle-constructing" method and their outstanding conductivity[J]. Macromolecules, 2014, 47(5): 1749-1756.

[20] Gao H L, Zhu Y B, Mao L B, et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure[J]. Nature Communications, 2016, 7(1): 1-8.

[21] Lv L, Zhang P, Cheng H, et al. Solution-processed ultraelastic and strong air-bubbled graphene foams[J]. Small, 2016, 12(24): 3229-3234.

[22] Dong Q, Chu Z, Gong X, et al. Reduced graphene oxide spatially scaffolded by a sucrose-derived carbon framework for trace and fast gas detection[J]. Carbon, 2022, 191: 164-174.

[23] Zeng Z, Wu N, Yang W, et al. Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing[J]. Small, 2022, 18(24): 2202047.

[24] Mohamed N B, El-Kady M F, Kaner R B. Macroporous graphene frameworks for sensing and supercapacitor applications[J]. Advanced Functional Materials, 2022, 32(42): 2203101.

[25] Ding Y, Cao K W, He J W, et al. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2022, 43(6): 1535-1543.

[26] Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560.

[27] Hu Y, Jiang Y, Ni L, et al. An elastic MOF/graphene aerogel with high photothermal efficiency for rapid removal of crude oil[J]. Journal of Hazardous Materials, 2023, 443: 130339.

[28] Ding M, Lu H, Sun Y, et al. Superelastic 3D assembled clay/graphene aerogels for continuous solar desalination and oil/organic solvent absorption[J]. Advanced Science, 2022, 9(36): 2205202.

[29] Sanati A, Kefayat A, Rafienia M, et al. A novel flexible, conductive, and three-dimensional reduced graphene oxide/polyurethane scaffold for cell attachment and bone regeneration[J]. Materials & Design, 2022, 221: 110955.

[30] Hu T, Wu Z, Sang W, et al. A sensitive electrochemical platform integrated with a 3D graphene aerogel for point-of-care testing for tumor markers[J]. Journal of Materials Chemistry B, 2022, 10(36): 6928-6938.

相似文献/References:

[1]张锦园,张菁丽,白忠波,等.电解铜箔用钛阳极涂层的研究现状[J].电镀与精饰,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
 Zhang Jinyuan,Zhang Jingli,Bai Zhongbo,et al.Research status of titanium anode coating for electrolytic copper foil[J].Plating & Finishing,2023,(9):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]

备注/Memo

收稿日期: 2023-02-06 修回日期: 2023-02-26 作者简介: 何天翊( 2001 —),男,本科生, email : 2621047239@qq.com * 通信作者: 姜越, email : yuej1986@yeah.net. 基金项目: 河北省自然科学基金资助项目( E2019402213 );河北工程大学博士专项基金资助项目 .

更新日期/Last Update: 2023-09-11