He Tianyi,Guo Xuli,Li Xiaoli,et al.Preparation and application of three-dimensional graphene[J].Plating & Finishing,2023,(9):42-48.[doi:10.3969/j.issn.1001-3849.2023.09.007]
三维石墨烯的制备及其应用
- Title:
- Preparation and application of three-dimensional graphene
- Keywords:
- three-dimensional graphene ; preparation method ; application
- 分类号:
- O613.71
- 文献标志码:
- A
- 摘要:
- 三维石墨烯材料因其高孔隙率、大比表面积、优异的导电性能和机械强度以及良好的生物相容性被广泛应用于众多领域。本文综述了三维石墨烯材料的主要制备方法,介绍三维石墨烯材料在传感器、能源、环保、生物医学领域的应用。分析了当前三维石墨烯各类制备技术的优缺点。最后针对三维石墨烯材料制备面临的问题和未来发展趋势进行了总结和展望。
- Abstract:
- : Three-dimensional graphene materials are widely used in many fields because of their high porosity , large specific surface area , excellent electrical conductivity , mechanical strength and good biocompatibility. In this paper , the main preparation methods of three-dimensional graphene materials are reviewed , and the applications of three-dimensional graphene materials in sensors , energy , environmental protection and biomedicine are introduced. The advantages and disadvantages of various preparation technologies of three-dimensional graphene are analyzed. Finally , the problems and future development trends of three-dimensional graphene materials are summarized and prospected.
参考文献/References:
[1] Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.
[2] Wang Z, Gao H, Zhang Q, et al. Recent advances in 3d graphene architectures and their composites for energy storage applications[J]. Small, 2019, 15(3): 1803858.
[3] Mu Y, Han M, Li J, et al. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries[J]. Carbon, 2021, 173: 477-484.
[4] Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of pegylated graphene in mice[J]. ACS Nano, 2011, 5(1): 516-522.
[5] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.
[6] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[7] Wu Y, Yi N, Huang L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio[J]. Nature Communications, 2015, 6(1): 1-9.
[8] Pham H D, Pham V H, Cuong T V, et al. Synthesis of the chemically converted graphene xerogel with superior electrical conductivity[J]. Chemical Communications, 2011, 47(34): 9672-9674.
[9] Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide composite hydrogel[J]. Chemical Communications, 2010, 46(14): 2376-2378.
[10] Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941.
[11] Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24(30): 4144-4150.
[12] Wang X, Zhang Y, Zhi C, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4(1): 1-8.
[13] Sheng K, Sun Y, Li C, et al. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J]. Scientific Reports, 2012, 2(1): 1-5.
[14] Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics[J]. Molecular Pharmaceutics, 2015, 12(11): 4077-4084.
[15] Cao K, Wu M, Bai J, et al. Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range[J]. Advanced Functional Materials, 2022, 32(28): 2202360.
[16] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[17] Shi L, Chen K, Du R, et al. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation[J]. Journal of the American Chemical Society, 2016, 138(20): 6360-6363.
[18] Yao H B, Ge J, Wang C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46): 6692-6698.
[19] Yang L, Wang Z, Ji Y, et al. Highly ordered 3d graphene-based polymer composite materials fabricated by "particle-constructing" method and their outstanding conductivity[J]. Macromolecules, 2014, 47(5): 1749-1756.
[20] Gao H L, Zhu Y B, Mao L B, et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure[J]. Nature Communications, 2016, 7(1): 1-8.
[21] Lv L, Zhang P, Cheng H, et al. Solution-processed ultraelastic and strong air-bubbled graphene foams[J]. Small, 2016, 12(24): 3229-3234.
[22] Dong Q, Chu Z, Gong X, et al. Reduced graphene oxide spatially scaffolded by a sucrose-derived carbon framework for trace and fast gas detection[J]. Carbon, 2022, 191: 164-174.
[23] Zeng Z, Wu N, Yang W, et al. Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing[J]. Small, 2022, 18(24): 2202047.
[24] Mohamed N B, El-Kady M F, Kaner R B. Macroporous graphene frameworks for sensing and supercapacitor applications[J]. Advanced Functional Materials, 2022, 32(42): 2203101.
[25] Ding Y, Cao K W, He J W, et al. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2022, 43(6): 1535-1543.
[26] Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560.
[27] Hu Y, Jiang Y, Ni L, et al. An elastic MOF/graphene aerogel with high photothermal efficiency for rapid removal of crude oil[J]. Journal of Hazardous Materials, 2023, 443: 130339.
[28] Ding M, Lu H, Sun Y, et al. Superelastic 3D assembled clay/graphene aerogels for continuous solar desalination and oil/organic solvent absorption[J]. Advanced Science, 2022, 9(36): 2205202.
[29] Sanati A, Kefayat A, Rafienia M, et al. A novel flexible, conductive, and three-dimensional reduced graphene oxide/polyurethane scaffold for cell attachment and bone regeneration[J]. Materials & Design, 2022, 221: 110955.
[30] Hu T, Wu Z, Sang W, et al. A sensitive electrochemical platform integrated with a 3D graphene aerogel for point-of-care testing for tumor markers[J]. Journal of Materials Chemistry B, 2022, 10(36): 6928-6938.
相似文献/References:
[1]张锦园,张菁丽,白忠波,等.电解铜箔用钛阳极涂层的研究现状[J].电镀与精饰,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
Zhang Jinyuan,Zhang Jingli,Bai Zhongbo,et al.Research status of titanium anode coating for electrolytic copper foil[J].Plating & Finishing,2023,(9):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
备注/Memo
收稿日期: 2023-02-06 修回日期: 2023-02-26 作者简介: 何天翊( 2001 —),男,本科生, email : 2621047239@qq.com * 通信作者: 姜越, email : yuej1986@yeah.net. 基金项目: 河北省自然科学基金资助项目( E2019402213 );河北工程大学博士专项基金资助项目 .