PDF下载 分享
[1]蔡佳萍,阮慧渊,张燕辉*. 还原电镀废水中Cr(VI)的光催化剂研究进展 [J].电镀与精饰,2023,(10):59-67.[doi:10.3969/j.issn.1001-3849.2023.10.010]
 Cai Jiaping,Ruan Huiyuan,Zhang Yanhui*.Research progress of photocatalysts for the reduction of Cr ( VI ) in electroplating wastewater[J].Plating & Finishing,2023,(10):59-67.[doi:10.3969/j.issn.1001-3849.2023.10.010]
点击复制

还原电镀废水中Cr(VI)的光催化剂研究进展

参考文献/References:



[1] Zheng Q, Durkin D P, Elenewski J E, et al. Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment[J]. Environmental Science & Technology, 2016, 50(23): 12938-12948.

[2] Deng F, Lu X, Luo Y, et al. Novel visible-light-driven direct Z-scheme CdS/CuInS 2 nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr(VI) reduction[J]. Chemical Engineering Journal, 2019, 361: 1451-1461.

[3] 徐丽繁 , 廖伟名 . 金属 - 有机框架材料去除水中重金属 Cr(VI) 的研究进展 [J]. 化工环保 , 2021, 41(1): 19-26.

[4] Zhang H K, Lu H, Wang J, et al. Cr(VI) reduction and Cr(III) immobilization by Acinetobacter sp. HK-1 with the assistance of a novel quinone/graphene oxide composite[J]. Environmental Science & Technology, 2014, 48(21): 12876-12885.

[5] Qiu J, Zhang X F, Zhang X, et al. Constructing Cd 0.5 Zn 0.5 S@ ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction[J]. Journal of Hazardous Materials, 2018, 349: 234-241.

[6] Zhang L, Niu C G, Liang C, et al. One-step in situ synthesis of CdS/SnO 2 heterostructure with excellent photocatalytic performance for Cr(VI) reduction and tetracycline degradation[J]. Chemical Engineering Journal, 2018, 352: 863-875.

[7] Chaudhari A U, Tapase S R, Markad V L, et al. Simultaneous decolorization of reactive orange M2R dye and reduction of chromate by Lysinibacillus sp. KMK-A[J]. Journal of Hazardous Materials, 2013, 262: 580-588.

[8] Barrera-Díaz C E, Lugo-Lugo V, Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction[J]. Journal of Hazardous Materials, 2012, 223: 1-12.

[9] 赵鑫 . 含铬废水处理实例 [J]. 电镀与精饰 , 2016, 38(6): 43-46.

[10] 孙玉凤 , 赵春英 , 赵平 . 还原法处理含铬电镀废水的工艺研究 [J]. 电镀与精饰 , 2012, 34(5): 43-46.

[11] Yang J, Niu X, An S, et al. Facile synthesis of Bi 2 MoO 6 -MIL-100(Fe) metal-organic framework composites with enhanced photocatalytic performance[J]. RSC Advances, 2017, 7(5): 2943-2952.

[12] Umapathi S, Masud J, Swesi A T, et al. FeNi 2 Se 4 -reduced graphene oxide nanocomposite: Enhancing bifunctional electrocatalytic activity for oxygen evolution and reduction through synergistic effects[J]. Advanced Sustainable Systems, 2017, 1(10): 1700086.

[13] Chen Y, Wang X. Template-free synthesis of hollow g-C 3 N 4 polymer with vesicle structure for enhanced photocatalytic water splitting[J]. The Journal of Physical Chemistry C, 2018, 122(7): 3786-3793.

[14] Yuan G, Li F, Li K, et al. Research progress on photocatalytic reduction of Cr(VI) in polluted water[J]. Bulletin of the Chemical Society of Japan, 2021, 94(4): 1142-1155.

[15] Jang J S, Kim H G, Joshi U A, et al. Fabrication of CdS nanowires decorated with TiO 2 nanoparticles for photocatalytic hydrogen production under visible light irradiation[J]. International Journal of Hydrogen Energy, 2008, 33(21): 5975-5980.

[16] Jang J S, Ji S M, Bae S W, et al. Optimization of CdS/TiO 2 nano-bulk composite photocatalysts for hydrogen production from Na 2 S/Na 2 SO 3 aqueous electrolyte solution under visible light ( λ ≥ 420 nm)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188(1): 112-119.

[17] 鲁秀国 , 翟永青 , 丁士文 , 等 . 二氧化钛光催化还原 Cr(VI) 的研究 [J]. 河北大学学报 ( 自然科学版 ), 2000, 20(1): 33-37.

[18] 何代平 . 光催化法处理含 Cr(VI) 废水的研究 [J]. 应用化工 , 2007, 36(1): 19-21.

[19] 王雪晶 , 卓康基 , 张燕辉 . CdS-Ti 2 C 复合材料的制备及其光催化还原 Cr(VI) 研究 [J]. 湖北民族大学学报 ( 自然科学版 ), 2021, 39(1): 24-27.

[20] Zhang Y, Chen Z, Liu S, et al. Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water[J]. Applied Catalysis B: Environmental, 2013, 140-141: 598-607.

[21] 姜海洋 , 刘慧玲 . 半导体复合材料光催化还原 CO 2 的研究进展 [J]. 硅酸盐学报 , 2022, 50(7): 2024-2055.

[22] Testa J J, Grela M A, Litter M I. Heterogeneous photocatalytic reduction of chromium (VI) over TiO 2 particles in the presence of oxalate: Involvement of C r( V) species[J]. Environmental Science & Technology, 2004, 38(5): 1589-1594.

[23] Yu H, Chen S, Quan X, et al. Fabrication of a TiO 2 -BDD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr(VI)[J]. Environmental Science & Technology, 2008, 42(10): 3791-3796.

[24] 冯光建 , 刘素文 , 修志亮 , 等 . 可见光响应型 TiO 2 光催化剂的机理研究进展 [J]. 稀有金属材料与工程 , 2009, 38(1): 185-188.

[25] 陈宜菲 , 邱罡 . TiO 2 / 石墨烯光催化还原去除 Cr(VI) 的研究 [J]. 工业水处理 , 2019, 39(12): 58-63.

[26] 马瑞霄 , 郑楠 , 张燕辉 . 花瓣状 ZnO 光催化处理双酚 A 和 Cr(VI) 废水 [J]. 化工环保 , 2021, 41(1): 33-37.

[27] 马瑞霄 , 周浩 , 张燕辉 . RGO-ZnO 光催化降解抗生素及还原 Cr(VI) 的研究 [J]. 工业水处理 , 2021, 41(3): 53-56.

[28] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.

[29] 张凯欣 , 赵宝秀 , 张艳青 , 等 . 可见光下 TiO 2 还原 Cr(VI) 光催化反应研究 [J]. 水处理技术 , 2021, 47(1): 49-53.

[30] 班加星 , 姚俊 , 杨琦 , 等 . 重金属 Cr(VI) 新型光催化还原方法研究 [J]. 水处理技术 , 2022, 48(7): 43-47+51.

[31] Ibrahim I, Kaltzoglou A, Athanasekou C, et al. Magnetically separable TiO 2 /CoFe 2 O 4 /Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light[J]. Chemical Engineering Journal, 2020, 381: 122730.

[32] Xu Q, Li R, Wang C, et al. Visible-light photocatalytic reduction of Cr(VI) using nano-sized delafossite (CuFeO 2 ) synthesized by hydrothermal method[J]. Journal of Alloys and Compounds, 2017, 723: 441-447.

[33] Zhang X, Yang Z, Mei J, et al. Outstanding performance of sulfurated titanomaghemite (Fe 2 TiO 5 ) for hexavalent chromium removal: Sulfuration promotion mechanism and its application in chromium resource recovery[J]. Chemosphere, 2022, 287: 132360.

[34] Kivyiro A O, Darkwah W K, Bofah-Buoh R, et al. Photocatalytic reduction of hexavalent chromium (Cr 6+ ) over BiOI calcined at different temperature under visible light irradiation[J]. ChemistrySelect, 2021, 6(24): 5906-5916.

[35] Xu F, Chen H, Xu C, et al. Ultra-thin Bi 2 WO 6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr (VI)[J]. Journal of Colloid and Interface Science, 2018, 525: 97-106.

[36] 陈紫盈 , 孙洁 , 罗雪文 , 等 . BiVO 4 晶面生长调控及其光催化氧化罗丹明 B 和还原 Cr(VI) 的性能 [J]. 环境化学 , 2020, 39(8): 2129-2136.

[37] Zhao B, Zhang K, Huang Y, et al. A novel visible light-driven TiO 2 photocatalytic reduction for hexavalent chromium wastewater and mechanism[J]. Water Science and Technology, 2021, 83(9): 2135-2145.

[38] Naimi-Joubani M, Shirzad-Siboni M, Yang J K, et al. Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO 2 composite[J]. Journal of Industrial and Engineering Chemistry, 2015, 22: 317-323.

[39] Zhao Y, Zhang Y, Li J, et al. Solvothermal synthesis of visible-light-active N-modified ZrO 2 nanoparticles[J]. Materials Letters, 2014, 130: 139-142.

[40] Qin B, Zhao Y, Li H, et al. Facet-dependent performance of Cu 2 O nanocrystal for photocatalytic reduction of Cr(VI)[J]. Chinese Journal of Catalysis, 2015, 36(8): 1321-1325.

[41] 许荣杰 , 吴潘 , 何坚 , 等 . Z 型异质结 C 3 N 4 /WO 3 光催化还原处理含 Cr(VI) 废水的研究 [J]. 现代化工 , 2022, 42(5): 114-120.

[42] Fatima N, Tanveer M, Nawaz T, et al. Synthesis of ZnO/Ag/phosphorene for photocatalytic reduction of hexavalent chromium (Cr-VI)[J]. Applied Nanoscience, 2022, 12(8): 2379-2387.

[43] Ren Y, Gong T, Tan S, et al. Photocatalytic activities of g-C 3 N 4 , Bi 3 NbO 7 and g-C 3 N 4 /Bi 3 NbO 7 in photocatalytic reduction of Cr (VI)[J]. Journal of Alloys and Compounds, 2022, 902: 163752.

[44] Ge T, Shen L, Li J, et al. Morphology-controlled hydrothermal synthesis and photocatalytic Cr (VI) reduction properties of α -Fe 2 O 3 [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635: 128069.

[45] Wang X, Xu J, Liu S, et al. Synthesis of TiO 2 /MOF-801(Zr) by a wet impregnation at room temperature for highly efficient photocatalytic reduction of Cr(VI)[J]. Solid State Sciences, 2022, 129: 106912.

[46] Ma R, Xie L, Huang Y, et al. A facile approach to synthesize CdS-attapulgite as a photocatalyst for reduction reactions in water[J]. RSC Advances, 2021, 11(43): 27003-27010.

[47] Wang X, Feng J I, Bai Y, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Reviews, 2016, 116(18): 10983-11060.

[48] Yu X Y, Yu L, Lou X W. Metal sulfide hollow nanostructures for electrochemical energy storage[J]. Advanced Energy Materials, 2016, 6(3): 1501333.

[49] Park J, Kwon T, Kim J, et al. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions[J]. Chemical Society Reviews, 2018, 47(22): 8173-8202.

[50] Nguyen C C, Vu N N, Do T O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications[J]. Journal of Materials Chemistry A, 2015, 3(36): 18345-18359.

[51] Shawky A, Mohamed R M, Alahmadi N, et al. Enhanced photocatalytic reduction of hexavalent chromium ions over S-Scheme based 2D MoS 2 -supported TiO 2 heterojunctions under visible light[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128564.

[52] Hu E, Gao X, Etogo A, et al. Controllable one-pot synthesis of various one-dimensional Bi 2 S 3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr (VI)[J]. Journal of Alloys and Compounds, 2014, 611: 335-340.

[53] Pudkon W, Kaowphong S, Pattisson S, et al. Microwave synthesis of ZnIn 2 S 4 /WS 2 composites for photocatalytic hydrogen production and hexavalent chromium reduction[J]. Catalysis Science & Technology, 2019, 9(20): 5698-5711.

[54] Zhang G, Chen D, Li N, et al. Preparation of ZnIn 2 S 4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI)[J]. Applied Catalysis B: Environmental, 2018, 232: 164-174.

[55] 邹学军 , 董玉瑛 , 冉春秋 , 等 . 花状 AgInS 2 微球的制备及其光催化还原 Cr(VI)[J]. 武汉大学学报 ( 理学版 ), 2016, 62(1): 92-96.

[56] Murugalakshmi M, Saravanakumar K, Park C M, et al. Efficient photocatalytic degradation of sulfasalazine and reduction of hexavalent chromium over robust In 2 S 3 /Nd 2 O 3 heterojunction under visible light[J]. Journal of Water Process Engineering, 2022, 45: 102492.

[57] Sun H, Park S J. Phosphorus-doped g-C 3 N 4/ SnS nanocomposite for efficient photocatalytic reduction of aqueous Cr(VI) under visible light[J]. Applied Surface Science, 2020, 531: 147325.

[58] Ullah H, Balkan T, Butler I S, et al. Surfactant-free synthesis of CdS nanorods for efficient reduction of carcinogenic Cr(VI)[J]. Journal of Coordination Chemistry, 2021, 74(9-10): 1628-1640.

[59] Sun M, Li F, Su M, et al. Fabrication of MOF-derived tubular In 2 O 3 @ SnIn 4 S 8 hybrid: Heterojunction formation and promoted photocatalytic reduction of Cr (VI) under visible light[J]. Journal of Colloid and Interface Science, 2021, 596: 278-287.

[60] Hu P, Liu X, Liu B, et al. Hierarchical layered Ni 3 S 2 -graphene hybrid composites for efficient photocatalytic reduction of Cr (VI)[J]. Journal of Colloid and Interface Science, 2017, 496: 254-260.

[61] Zhang Q, Liu S, Zhang Y, et al. Enhancement of the photocatalytic activity of g-C 3 N 4 via treatment in dilute NaOH aqueous solution[J]. Materials Letters, 2016, 171: 79-82.

[62] Lu Y, Song J, Li W, et al. Preparation of BiOCl/Bi 2 S 3 composites by simple ion exchange method for highly efficient photocatalytic reduction of Cr 6+ [J]. Applied Surface Science, 2020, 506: 145000.

[63] 陈嘉瑾 , 梁娟 , 高智睿 , 等 . 活性炭掺杂 BiVO 4 的制备及光催化还原 Cr(VI) 的研究 [J]. 工业水处理 , 2019, 39(9): 75-79.

[64] Xie H, Ma D, Liu W, et al. Zr-Based MOFs as new photocatalysts for the rapid reduction of Cr(VI) in water[J]. New Journal of Chemistry, 2020, 44(17): 7218-7225.

[65] Fan Z, Zhao Y, Zhai W, et al. Facet-dependent performance of BiOBr for photocatalytic reduction of Cr(VI)[J]. RSC advances, 2016, 6(3): 2028-2031.

[66] 包欣 , 尹志凡 , 胡霞 , 等 . Ti 3 C 2 纳米层状材料对废水中 Cr(VI) 的光催化去除性能 [J]. 化工环保 , 2019, 39(6): 689-694.

[67] Zhang J, Zhang W, Yuan F, et al. Effect of Bi 5 O 7 I/calcined ZnAlBi-LDHs composites on Cr(VI) removal via adsorption and photocatalytic reduction[J]. Applied Surface Science, 2021, 562: 150129.

[68] Liu J, Wu J, Wang N, et al. Surface reconstruction of BiSI nanorods for superb photocatalytic Cr(VI) reduction under near-infrared light irradiation[J]. Chemical Engineering Journal, 2022, 435: 135152.

[69] He J, Zhou H, Peng Q, et al. UiO-66 with confined dyes for adsorption and visible-light photocatalytic reduction of aqueous Cr(VI)[J]. Inorganic Chemistry Communications, 2022, 140: 109441.

[70] Li D, Li J, Jin Q, et al. Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation[J]. Journal of Colloid and Interface Science, 2019, 537: 256-261.

[71] Li H, Wu T, Cai B, et al. Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl: Ag hollow nanocrystals[J]. Applied Catalysis B: Environmental, 2015, 164: 344-351.

备注/Memo

收稿日期: 2023-02-02 修回日期: 2023-03-18 作者简介: 蔡佳萍( 2000 —),女,硕士研究生,研究方向:环境功能材料, email : 1015887714@qq.com * 通信作者: 张燕辉( 1986 —),男,副教授, email : zhangyh@mnnu.edu.cn 基金项目: 国家自然科学基金资助项目( 21703094 );福建省自然科学基金资助项目( 2019J01743 )

更新日期/Last Update: 2023-10-07