Li Yuluan,Qu Yuxin,Cheng Haidong,et al.Simulation study on the dynamic behavior of magnetic abrasives in magnetic particle grinding[J].Plating & Finishing,2024,(2):107-112.[doi:10.3969/j.issn.1001-3849.2024.02.016]
磁粒研磨中磁性磨料的动力学行为仿真研究
- Title:
- Simulation study on the dynamic behavior of magnetic abrasives in magnetic particle grinding
- Keywords:
- magnetic particle grinding ; discrete element method ; abrasive dynamics ; parameter calibration
- 分类号:
- TG176
- 文献标志码:
- A
- 摘要:
- 为了探究磁粒研磨中磁性磨料的最佳动力学参数,利用有限元软件 ANSYS Maxwell 结合离散元软件 EDEM ,对磁粒研磨加工过程进行动态仿真。首先进行微观参数标定,得到了磁性磨粒离散元仿真所需的参数,最终确定滑动摩擦系数为 0.9 、滚动摩擦系数为 0.109 为最优的参数组合。在此参数基础上,对磁粒研磨加工过程进行动态仿真。结果表明:在其他条件一定的情况下,磁场转速越高,单位时间内磁性磨粒与管件表面之间的作用次数越高,加工效率越高。通过加工实验,得到了在不同加工参数下表面粗糙度数据。模拟仿真结果与实验结果的变化趋势具有一致性,验证了利用数值分析的手段对磁粒研磨加工过程进行理论分析的可行性。
- Abstract:
- : In order to explore the optimal kinetic parameters of magnetic abrasives in magnetic particle grinding , the finite element software ANSYS Maxwell combined with the discrete element software EDEM were used to dynamically simulate the magnetic particle grinding process. Firstly , the microscopic parameters were calibrated , and the parameters required for the discrete element simulation of magnetic abrasive grains were obtained. Finally , the optimal parameter combination of sliding friction coefficient of 0.9 and rolling friction coefficient of 0.109 was determined. Based on this parameter , the magnetic particle grinding process was dynamically simulated. It was concluded that under other conditions , the higher the magnetic field speed , the higher the number of actions between the magnetic abrasive grain and the surface of the pipe in unit time , and the higher the processing efficiency. Through the processing experiment , the surface roughness data under different processing parameters were obtained. The simulation results were consistent with the change trend of the experimental results , which verified the feasibility of theoretical analysis of magnetic particle grinding processing by means of numerical analysis.
参考文献/References:
[1] 廖明 , 韩冰 , 陈燕 , 等 . 钛合金管内表面的电化学磁力研磨复合光整试验 [J]. 中国表面工程 , 2016, 29(3): 123-131.
[2] 石沛 . 钛合金管内壁珩磨式磁流变抛光方法及机理研究 [D]. 沈阳 : 东北大学 , 2019.
[3] 韩冰 , 刘立鑫 , 陈燕 . 磁力研磨法加工弯管内表面的工艺参数优化 [J]. 中国机械工程 , 2015, 26(6): 814-817.
[4] 陈燕 . 磁粒研磨加工技术及应用 [M]. 北京 : 科学出版社 , 2021.
[5] 徐立军 , 王文 , 杨诚 . 磁力研磨加工技术综述 [J]. 组合机床与自动化加工技术 , 2003(1): 43-45.
[6] 高国富 , 王岩 . 磁力研磨加工技术研究进展 [J]. 河南理工大学学报 ( 自然科学版 ), 2015, 34(6): 813-817.
[7] Frankowski P, Morgeneyer M. Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements[C]//Powders and Grains 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. Sydney, Australia, 2013: 851-854.
[8] Mori T, Hirota K, Kawashima Y. Clarification of magnetic abrasive finishing mechanism[J]. Journal of Materials Processing Technology, 2003, 143-144: 682-686.
[9] Jain V K, Kumar P, Behera P K, et al. Effect of working gap and circumferential speed on the performance of magnetic abrasive ?nishing process[J]. Wear, 2001, 250:384-390.
[10] Mosavat M, Rahimi A. Simulation and experimental study on the effect of abrasive size, rotational speed, and machining gap during ultra-precision polishing of monocrystalline silicon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 50-56.
[11] 孟庆涛 . 磁力研磨加工试验研究 [D]. 大连 : 大连理工大学 , 2006.
[12] 刘冬冬 , 韩冰 , 陈燕 , 等 . 超声磁粒研磨 Al 6061 管内表面光整试验研究 [J]. 电镀与精饰 , 2019, 41(12): 14-19.
[13] 朱子俊 , 韩冰 , 李奎 , 等 . 超声辅助磁粒研磨 TC4 平面的光整试验研究 [J]. 电镀与精饰 , 2020, 42(10): 6-11.
[14] 许召宽 , 韩冰 , 陈燕 , 等 . 基于电解 - 磁力复合研磨法的表面光整加工 [J]. 电镀与精饰 , 2018, 40(12): 7-10.
[15] 谭悦 , 陈燕 . 电解复合磁力研磨 GH4169 管内表面的光整研究 [J]. 电镀与精饰 , 2020, 42(1): 27-32.
[16] 韩冰 , 邓超 , 陈燕 . 球形磁铁在弯管内表面磁力研磨中的应用 [J]. 摩擦学学报 , 2013, 33(6): 565-570.
[17] 喻正好 , 韩冰 , 陈松 , 等 . 钛合金空间弯管磁粒研磨工艺参数分析 [J]. 表面技术 , 2018, 47(4): 183-189.
[18] Owen P J, Cleary P W. Prediction of screw conveyor performance using the Discrete Element Method (DEM)[J]. Powder Technology, 2009, 193(3): 274-288.
[19] Phan H T, Tieu A K, Zhu H, et al. A study of abrasive wear on high speed steel surface in hot rolling by Discrete Element Method[J]. Tribology International, 2017, 110: 66-76.
[20] Iordanoff I, Battentie A R, Néauport J, et al. A discrete element model to investigate sub-surface damage due to surface polishing[J]. Tribology International, 2008, 41(11): 957-964.
[21] Kang Y S, Hashimoto F, Johnson S P, et al. Discrete element modeling of 3D media motion in vibratory finishing process[J]. CIRP Annals, 2017, 66(1): 313-316.
[22] 王泳嘉 . 离散单元法—一种适用于节理岩石力学分析的数值方法 [C].// 第一届全国岩石力学数值计算及模型试验讨论会 论文集 , 1986: 32-37.
[23] 徐泳 , Kafui C D, Thornton K. 用颗粒离散元法模拟料仓卸料过程 [J]. 农业工程学报 , 1999(3): 65-69.
[24] 刘安源 , 刘石 , 潘忠刚 . 振动给料机中固体颗粒物料运动规律的数值研究 [J]. 中国科学院研究生院学报 , 2002(1): 35-42.
[25] 冯洋 . 磁场作用下磁性粒子的团聚行为模拟及试验研究 [D]. 武汉 : 华中科技大学 , 2016.
[26] 胡敬磊 . 基于离散元法的磨料流抛光及材料去除机理研究 [D]. 长春 : 长春理工大学 , 2018.
[27] 李奎 . 磁粒研磨加工过程的离散元仿真分析 [D]. 鞍山 : 辽宁科技大学 , 2021.
[28] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society A, 1971, 324(1558): 301-313.
[29] Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988.
[30] Hoshishima C, Ohsaki S, Nakamura H, et al. Parameter calibration of discrete element method modelling for cohesive and non-spherical particles of powder[J]. Powder Technology, 2021, 386: 199-208.
[31] Lindner J, Menzel K, Nirschl H. Simulation of magnetic suspensions for HGMS using CFD, FEM and DEM modeling[J]. Computers & Chemical Engineering, 2013, 54: 111-121.
相似文献/References:
[1]刘冬冬,韩 冰,陈 燕,等.GCr15轴承内圈磁粒研磨光整实验[J].电镀与精饰,2019,(7):1.[doi:10.3969/j.issn.1001-3849.2019.07.001]
LIU Dongdong,HAN Bing,CHEN Yan,et al.Experimental Study on GCr15 Bearing Inner Ring Magnetite Grinding and Finishing[J].Plating & Finishing,2019,(2):1.[doi:10.3969/j.issn.1001-3849.2019.07.001]
[2]赵 杨,陈 燕*,程 淼,等.电磁场作用下球形磁极辅助研磨弯管内表面研究[J].电镀与精饰,2020,(1):22.[doi:10.3969/j.issn.1001-3849.2020.01.005]
ZHAO Yang,CHEN Yan*,CHENG Miao,et al.Study on the Inner Surface Finishing of Bend Pipe by Electromagnetic Fields Drive Spherical Magnetic Pole[J].Plating & Finishing,2020,(2):22.[doi:10.3969/j.issn.1001-3849.2020.01.005]
[3]胡玉刚,陈 燕*,杨大鹏,等.PVD涂层阶梯杆的磁粒研磨加工研究[J].电镀与精饰,2020,(2):20.[doi:10.3969/j.issn.1001-3849.2020.02.005]
HU Yugang,CHEN Yan*,YANG Dapeng,et al.Study on Magnetic Abrasive Machining of PVD Coated Stepped Rod[J].Plating & Finishing,2020,(2):20.[doi:10.3969/j.issn.1001-3849.2020.02.005]
[4]李 奎,韩 冰*,朱子俊,等.磁粒研磨中单颗磁性磨粒磁场力的实验研究[J].电镀与精饰,2021,(5):15.[doi:10.3969/j.issn.1001-3849.2021.05.003]
LI Kui,HAN Bing*,ZHU Zijun,et al.Experimental Study on the Magnetic Field Force of a Single Magnetic Abrasive Particle in Magnetic Grinding[J].Plating & Finishing,2021,(2):15.[doi:10.3969/j.issn.1001-3849.2021.05.003]
[5]李佳新,曹 睿,矫彦婷,等.基于交变磁场辅助磁力研磨中永磁极优化试验[J].电镀与精饰,2024,(5):28.[doi:10.3969/j.issn.1001-3849.2024.05.004]
Li Jiaxin,Cao Rui,Jiao Yanting,et al.Optimization experiment of permanent magnetic pole in magnetic grinding assisted by alternating magnetic field[J].Plating & Finishing,2024,(2):28.[doi:10.3969/j.issn.1001-3849.2024.05.004]
[6]收稿日期: 0-0- 修回日期: 0-0-08.双轴式不定偏心法对提高磁粒研磨轨迹均匀性的研究[J].电镀与精饰,2024,(11):67.
Research on improving the uniformity of magnetic particle grinding trajectory by double axis indeterminate eccentricity method Ma Xiaogang 1 2* Wang Zijian 1 2 Li Houle 1 2 Wang Zezhi 1 2[J].Plating & Finishing,2024,(2):67.
备注/Memo
收稿日期: 2023-04-06 修回日期: 2023-05-26 作者简介: 李毓滦( 2002 —),男,本科生, email : 1290736451@qq.com * 通信作者: 韩冰( 1975 — ),男,博士,教授,研究方向为金属材料表面技术, email : Hanb75@126.com 基金项目: 国家自然科学基金项目( 51775258 );辽宁科技大学大学生创新创业训练计划项目( 202310146009 )