PDF下载 分享
[1]侯攀超,杨 玥,周景淼,等.ZnO/GO复合薄膜电极的制备及其耐腐蚀性能[J].电镀与精饰,2024,(10):50-55.
 Hou Panchao,Yang Yue,Zhou Jingmiao,et al.Preparation and corrosion resistance of ZnO/GO composite thin film electrodes[J].Plating & Finishing,2024,(10):50-55.
点击复制

ZnO/GO复合薄膜电极的制备及其耐腐蚀性能

参考文献/References:

[1].Nguyen N T, Chan S H. Micromachined polymer electrolyte membrane and direct methanol fuel cells-a review[J]. Journal of Micromechanics and Microengineering, 2006, 16(4): R1.
[2].Hensel J P, Gemmen R S, Thornton J D, et al. Effects of cell-to-cell fuel mal-distribution on fuel cell performance and a means to reduce mal-distribution using MEMS micro-valves[J]. Journal of Power Sources, 2007, 164(1): 115-125.
[3].Catalyst F C. Stability of commercial Pt/C low temperature fuel cell catalyst: Electrochemical IL-SEM study[J]. Acta Chimica Slovenica, 2014, 61: 280-283.
[4].Ekdunge P, R?berg M. The fuel cell vehicle analysis of energy use, emissions and cost[J]. International Journal of Hydrogen Energy, 1998, 23(5): 381-385.
[5].Wei T, Zhang N, Ji Y, et al. Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors[J]. Chinese Chemical Letters, 2022, 33(2): 714-729.
[6].Sundmacher K. Fuel cell engineering: toward the design of efficient electrochemical power plants[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10159-10182.
[7].杜瑞成, 王小玉, 李燕. 纳米四氧化三钴催化剂的制备及其电催化性能[J]. 化学通报, 2024, 87(5): 598-604.
[8].Tian J, Liu R, Wang G, et al. Dependence of metallic Ag on the photocatalytic activity and photoinduced stability of Ag/ AgCl photocatalyst[J]. Applied surface science, 2014, 319: 324-331.
[9].Menning C A, Chen J G. Theoretical prediction and experimental verification of stability of Pt-3d-Pt subsurface bimetallic structures: From Single crystal surfaces to polycrystalline films[J]. Topics in Catalysis, 2010, 53: 338-347.
[10].解丹萍, 殷博文, 张晓春, 等. 基于N-ZnO纳米材料光电化学传感器检测抗坏血酸[J]. 化学研究, 2024, 35(3): 225-230.
[11].Dědková K, Janíková B, Matějová K, et al. ZnO/graphite composites and its antibacterial activity at different conditions[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 151: 256-263.
[12].Xia C, Qiao Z, Feng C, et al. Study on zinc oxide-based electrolytes in low-temperature solid oxide fuel cells[J]. Materials, 2017, 11(1): 40.
[13].Paydar S, Akbar N, Shi Q, et al. Developing cuprospinel CuFe 2O4-ZnO semiconductor heterostructure as a proton conducting electrolyte for advanced fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9927-9937.
[14].Shah M A K Y, Mushtaq N, Rauf S, et al. The semiconductor SrFe 0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30319-30327.
[15].Lee C W, Eom S W, Sathiyanarayanan K, et al. Preliminary comparative studies of zinc and zinc oxide electrodes on corrosion reaction and reversible reaction for zinc/air fuel cells[J]. Electrochimica acta, 2006, 52(4): 1588-1591.
[16].Zhao Z, Fang F, Wu J, et al. Interfacial chemical effects of amorphous zinc oxide/graphene[J]. Materials, 2021, 14(10): 2481.
[17].Suresh S, Subash B, Karthikeyan S. Electrical, optical and photocatalytic properties of Ti-loaded ZnO/ZnO and Ti-loaded ZnO nanospheres[J]. Journal of the Iranian Chemical Society, 2017, 14: 1591-1600.
[18].Santos Y P, Valen?a E, Machado R, et al. A novel structure ZnO-Fe-ZnO thin film memristor[J]. Materials Science in Semiconductor Processing, 2018, 86: 43-48.
[19].Kim J C, Wi J H, Ri N C, et al. Thermal conductivity of graphene/ graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations[J]. Solid State Communications, 2021, 328: 114249.

相似文献/References:

[1]何 睿,许艳玲*,曾希野,等.氧化石墨烯/四氧化三铁磁性复合材料对Cr(VI)的吸附研究[J].电镀与精饰,2019,(9):1.[doi:10.3969/j.issn.1001-3849.2019.09.001]
 HE Rui,XU Yanling*,ZENG Xiye,et al.Study on Adsorption Behavior of Cr(VI) by Graphene Oxide/Ferrous Oxide Magnetic Composites[J].Plating & Finishing,2019,(10):1.[doi:10.3969/j.issn.1001-3849.2019.09.001]
[2]胡素荣*,杨文茂.浸锌溶液组分含量的滴定分析方法对比[J].电镀与精饰,2019,(11):43.[doi:10.3969/j.issn.1001-3849.2019.11.009]
 HU Surong*,YANG Wenmao.Comparison of Titration Analysis Methods for Component Content of Zinc Dipping Solution[J].Plating & Finishing,2019,(10):43.[doi:10.3969/j.issn.1001-3849.2019.11.009]
[3]李丽君,卜路霞*,刘树彬,等.不同表面活性剂对氧化石墨烯分散性的影响[J].电镀与精饰,2020,(6):23.[doi:10.3969/j.issn.1001-3849.2020.06.0050]
 LI Lijun,BU Luxia*,LIU Shubin,et al.Effects of Different Surfactants on Dispersibility of Graphene Oxide[J].Plating & Finishing,2020,(10):23.[doi:10.3969/j.issn.1001-3849.2020.06.0050]
[4]张雪娜,冯贝贝,索文华,等.电沉积法制备Ni-GO复合镀层的工艺及力学性能研究[J].电镀与精饰,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
 ZHANG Xuena,FENG Beibei,SUO Wenhua,et al.Study on the Process and Mechanical Properties of Ni-GO Composite Coating Prepared by Electrodeposition[J].Plating & Finishing,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
[5]杨 明,陈国美,倪自丰*,等.40Cr基体表面GO/BTESPT硅烷复合膜的制备和性能表征[J].电镀与精饰,2020,(9):16.
 YANG Ming,CHEN Guomei,NI Zifeng*,et al.Preparation and Characterization of GO/BTESPT Silane Composite Film on 40Cr Substrate[J].Plating & Finishing,2020,(10):16.
[6]刘 凯,沈喜训 *,马 祥,等.氧化石墨烯强化银镀层的耐蚀性和耐磨性研究[J].电镀与精饰,2024,(5):11.[doi:10.3969/j.issn.1001-3849.2024.05.002]
 Liu Kai,Shen Xixun *,Ma Xiang,et al.Study on corrosion resistance and wear resistance of silver coatings strengthened by graphene oxide[J].Plating & Finishing,2024,(10):11.[doi:10.3969/j.issn.1001-3849.2024.05.002]
[7]李孝坤雷鸣科 黄 帅.doi: 10.3969/j.issn.1001-3849.2025.02.001烧结钕铁硼电沉积Co-Mo-P/GO复合镀层及耐蚀性研究[J].电镀与精饰,2025,(02):1.
 Li Xiaokun*,Lei Mingke,Huang Shuai.Electrodeposition of Co-Mo-P/GO composite coating on sintered NdFeB and its corrosion resistance[J].Plating & Finishing,2025,(10):1.

更新日期/Last Update: 2024-10-16