Liu Jingchun*,Zhao Ziye,Zhao Jianguo,et al.The corrosion resistance of LDH coatings constructed via electrodeposition technique on AZ31B[J].Plating & Finishing,2024,(7):22-31.[doi:10.3969/j.issn.1001-3849.2024.07.004]
AZ31B镁合金表面电化学沉积LDH涂层及其耐腐蚀性能研究
- Title:
- The corrosion resistance of LDH coatings constructed via electrodeposition technique on AZ31B
- Keywords:
- magnesium alloy ; electrodeposition ; LDH ; corrosion resistance ; coatings
- 摘要:
- 为提高 AZ31B 镁合金的耐腐蚀性能,优化了原位电化学沉积层状双金属氢氧化物( Mg-Al-LDH )涂层的工艺参数。配制了不同浓度的溶液,用原位电化学沉积方法在 AZ31B 表面沉积了一层 LDH 涂层,用硬脂酸修饰后得到 SA-LDH 复合涂层。测试了其微观组织和化学成分,利用电化学极化和交流阻抗( EIS )实验表征了涂层的耐腐蚀性,确定优选的电化学沉积工艺对其组织性能的影响。结果表明:优选的溶液浓度为 0.05 mol/L 时,所得涂层表面多孔,与基体结合良好。 X 射线衍射能谱( XRD )中存在 LDH ( 003 )与( 006 )两个特征峰。极化曲线显示 LDH 涂层腐蚀电流密度为 9.21×10 -6 A/cm 2 ,与无涂层镁合金相比降低两个数量级, SA-LDH 涂层的腐蚀电位提升到 - 1.33 V 。在 3.5 wt.% NaCl 溶液浸泡后的 LDH 涂层交流阻抗显示阻抗模值和频率增加,表现出较好耐腐蚀性。添加硬脂酸可以在涂层表面形成一层超疏水薄膜,能够有效地阻碍腐蚀介质 Cl - 对 AZ31B 镁合金的渗透侵蚀。
- Abstract:
- : Aiming at improving the corrosion resistance of AZ31B magnesium alloy , thein-situ electrochemical deposition process parameters of Mg-Allayered double hydroxide ( LDH ) coating was optimized. Different concentrations of electrochemical deposition solutions were prepared , and a layer of LDH coating was deposited on the surface of AZ31B by in situ electrochemical deposition method , and SA-LDH composite coating was obtained after modification with stearic acid. The microstructure and chemical composition were tested and analyzed , the corrosion resistance of the coating was characterized by electrochemical polarization and alternating impedance ( EIS ) experiments , so the influence of the preferred electrochemical deposition process on its microstructure properties was determined. The results show that the preferred solution concentration is 0.05 mol/L , and the surface of the obtained coating is porous and well combined with the matrix. The X-ray diffraction ( XRD ) pattern showed two characteristic peaks of LDH ( 003 ) and ( 006 ) . The polarization curve results showed that the corrosion current density of LDH coating was 9.21×10 -6 A/cm 2 , which was reduced by two orders of magnitude compared with uncoated magnesium alloy , and the corrosion potential of SA-LDH coating increased to - 1.33 V. The AC impedance of LDH coating after immersion in 3.5 wt.% NaCl solution showed an increase in impedance modulus and frequency , showing good corrosion resistance. By adding stearic acid , a superhydrophobic film can be formed on the coating surface , which can effectively hinder the penetration and erosion of AZ31B magnesium alloy by the corrosive medium Cl - .
参考文献/References:
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Materials Science and Engineering A, 2001, 302(1): 37-45.
[2] Hotnberger H, Vitranen S, Boccaccini A R. Biomedical coatings on magnesium alloys-A review[J]. Acta Biomater, 2012, 8: 2442-2455.
[3] Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1): 1-41.
[4] Wei J, Li B, Jing L, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti- corrosion coating and a super amphiphobic coating[J]. Chemical Engineering Journal, 2020, 390: 124562.
[5] Chun Y Z, Shang J Y, Bao X L, et al. Ratio of total acidity to pH value of coating bath: A new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys[J]. Corrosion Science, 2019, 150: 279-295.
[6] Lu X P, Blawert C, Tolnai D, et al. 3D reconstruction of plasma electrolytic oxidation coatings on Mg alloy via synchrotron radiation tomography[J]. Corrosion Science, 2018, 139: 395-402.
[7] Wu F, Liang J, Peng Z, et al. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy[J]. Applied Surface Science, 2014, 313: 834-840.
[8] Chen Y, Lu X P, Blawert C, et al. Formation of self- lubricating PEO coating via in situ incorporation of PTFE particles[J]. Surface and Coatings Technology, 2018, 337: 379-388.
[9] Adsul S P, Raju S, Satadab V, et al. Evaluation of self-healing properties of inhibitor loaded nanoclay-based anticorrosive coatings on magnesium alloy AZ91D[J]. Journal of Magnesium and Alloys, 2018, 6(3): 299-308.
[10] 李文涛 , 周升国 , 赵文杰 . 层状双金属氢氧化物耐蚀材料的研究进展 [J]. 表面技术 , 2019, 48(1): 241-248.
[11] Wang X, Jing C, Chen Y X, et al. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg-Al layered double hydroxide coating on AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys, 2020, 8(1): 291-300
[12] Tan J K E, Bitbilis N, Choudhor Y S, et al. Corrosion protection enhancement of Mg alloy WE43 by in situ synthesis of Mg-Fe LDH/citric acid composite coating intercalated with 8HQ[J]. Corrosion Science, 2022, 205: 110444.
[13] Hang T X, Ttuc T A, Duong N T, et al. Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel[J]. Progress in Organic Coatings, 2012, 74(2): 343-348.
[14] 张菊梅 , 候安荣 , 李嘉诚 , 等 . LA43M 镁锂合金表面水热合成 Mg-Al-LDH 膜层的耐腐蚀及磨损性能 [J]. 表面技术 , 2022, 51(11): 318-327.
[15] 张菊梅 , 段鑫 , 王凯 , 等 . 水热反应温度对 LA103Z 镁锂合金表面 MAO/LDH 复合膜层微观组织及耐蚀性的影响 [J]. 表面技术 , 2021, 50(5): 261-268.
[16] Zeng R C, Liu Z G, Zhang F, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy[J]. Journal of Materials Chemistry A, 2014, 2(32): 13049-13057.
[17] Chen H, Zhang F, Fu S, et al. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J]. Advanced Materials, 2006, 18(23): 3089-3093.
[18] Adsul S H, Raju K R C S, Satada B V, et al.Evaluation of self-healing properties of inhibitor loaded nanoclay-based anticorrosive coatings on magnesium alloy AZ91D[J]. Journal of Magnesium and Alloys, 2018, 6(3): 299-308.
[19] Kamiyama N, Panomsuwan G, Yamamoto E, et al. Effect of treatment time in the Mg(OH) 2 /Mg-Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance[J]. Surface and CoatingsTechnology, 2016, 286(7): 172-177.
[20] Wu L, Ding X, Zhang Z, et al. Doublely-doped Mg-Al-Ce-V 2 O 7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion[J]. Journal of Materials Science and Technology, 2021, 64: 66-72.
[21] He Q Q, Zhou M J, Hu J M. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys[J]. Electrochimica Acta, 2020, 355: 136796.
[22] Wang L, Zong Q, Sun W, et al. Chemical modification of hydrotalcite coating for enhanced corrosion resistance [J]. Corrosion Science, 2015, 93: 256-266.
[23] Li J, Zhang C L, Liu Y, et al. Effect of annealing treatment on corrosion resistance in solutions of NaCl and NaOH for electrodeposited nanocrystalline nickel films[J].Corrosion Science and Protection Technology, 2016, 28(3): 235-240.
[24] Guo X, Zhang F, Evans D G, et al. Layered double hydroxide films: Synthesis, properties and applications [J]. Chemical Communications, 2010, 46(29): 5197-5210.
[25] Rohit R C, Jagadale A D, Shinde S K, et al. A review on electrodeposited layered double hydroxides for energy and environmental applications[J]. Materials Today Communications, 2021, 27: 102275.
[26] Cionti C, Taroni T, Meroni D. Bouncing droplets: A hands-on activity to demonstrate the properties and applications of superhydrophobic surface coatings[J]. Journal of Chemical Education, 2019, 96(9): 1971-1976.
[27] Liu Q, Chen D, Kang Z. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy[J]. ACS Applied Materials andInterfaces, 2015, 7(3): 1859-1867.
[28] Tedim J, Zhelu M L, Bastios A C, et al. Influence of preparation conditions of layered double hydroxide conversion films on corrosion protection[J]. Electrochimica Acta, 2014, 117: 164-171.
相似文献/References:
[1]徐美玲,亢淑梅,陈婷婷,等.添加氯化铈对镁合金Ni?P化学镀镀层性能影响[J].电镀与精饰,2019,(1):37.[doi:10.3969/j.issn.1001-3849.2019.01.008]
XU Meiling,KANG Shumei,CHEN Tingting,et al.Properties of Electroless Plating Ni?P on Magnesium AlloySubstrate by Adding CeCl3[J].Plating & Finishing,2019,(7):37.[doi:10.3969/j.issn.1001-3849.2019.01.008]
[2]牟世辉,尹鸿鹍,代肇一.镀铜优化对AZ91D镁合金疏水膜性能的影响[J].电镀与精饰,2019,(6):29.[doi:10.3969/j.issn.1001-3849.2019.06.006]
MU Shihui,YIN Hongkun,DAI Zhaoyi.Effect of Copper Plating Optimization on the Performance of AZ91D Magnesium Alloy Hydrophobic Membrane[J].Plating & Finishing,2019,(7):29.[doi:10.3969/j.issn.1001-3849.2019.06.006]
[3]刘 玮,安成强*,郝建军,等.钼酸钠对AZ91D镁合金钒/锆复合转化膜性能的影响[J].电镀与精饰,2019,(8):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
LIU Wei,AN Chengqiang*,HAO Jianjun,et al.Effect of Na2MoO4 on Properties of Vanadium/Zirconate Conversion Coating on AZ91D Magnesium Alloy[J].Plating & Finishing,2019,(7):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
[4]李佳霖,郝建军,牟世辉.Fe2+对镁合金电化学磷化改性研究[J].电镀与精饰,2019,(10):1.[doi:10.3969/j.issn.1001-3849.2019.10.001]
LI Jialin,HAO Jianjun,MOU Shihui.Study on Electrochemical Phosphating Modification of Magnesium Alloy by Fe2+[J].Plating & Finishing,2019,(7):1.[doi:10.3969/j.issn.1001-3849.2019.10.001]
[5]贾启华,许晓娟*.沉积时间对镁合金化学镀镍的影响[J].电镀与精饰,2019,(12):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
JIA Qihua,XU Xiaojuan*.Effect of Deposition Time on Direct Electroless Plating of Magnesium Alloys[J].Plating & Finishing,2019,(7):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
[6]王 丽,顾 威,郭 荣,等.环保型无机缓蚀剂对AZ91D镁合金的缓蚀效果[J].电镀与精饰,2020,(4):18.[doi:10.3969/j.issn.1001-3849.2020.04.0040]
WANG Li,GU Wei,GUO Rong,et al.Inhibition Effect of Environmental Protection Inorganic Corrosion Inhibitor on AZ91D Magnesium Alloy[J].Plating & Finishing,2020,(7):18.[doi:10.3969/j.issn.1001-3849.2020.04.0040]
[7]张雪娜,冯贝贝,索文华,等.电沉积法制备Ni-GO复合镀层的工艺及力学性能研究[J].电镀与精饰,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
ZHANG Xuena,FENG Beibei,SUO Wenhua,et al.Study on the Process and Mechanical Properties of Ni-GO Composite Coating Prepared by Electrodeposition[J].Plating & Finishing,2020,(7):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
[8]党在清*.镁合金复合镀层的制备及其结构与性能表征[J].电镀与精饰,2020,(11):16.[doi:10.3969/j.issn.1001-3849.2020.11.0040]
DANG Zaiqing*.Study on the Structure and Properties of Composite Coating on Magnesium Alloy[J].Plating & Finishing,2020,(7):16.[doi:10.3969/j.issn.1001-3849.2020.11.0040]
[9]王晓奇*,曹 慧,雷 彪.镁合金表面电弧离子镀TiAlN薄膜的结构与性能研究[J].电镀与精饰,2021,(6):25.[doi:10.3969/j.issn.1001-3849.2021.06.006]
WANG Xiaoqi*,CAO Hui,LEI Biao.Structure and Properties of TiAlN Films by Arc Ion Plating on Mg Alloys[J].Plating & Finishing,2021,(7):25.[doi:10.3969/j.issn.1001-3849.2021.06.006]
[10]宋政伟*,丁莉峰,王沛霖,等.镁合金表面Ni-P/Cu-Zn超疏水复合涂层制备及耐蚀性研究[J].电镀与精饰,2021,(7):10.[doi:10.3969/j.issn.1001-3849.2021.07.002]
SONG Zhengwei*,DING Lifeng,WANG Peilin,et al.Preparation and Corrosion Resistance of Ni-P/Cu-Zn Super-Hydrophobic Composite Coating on the Surface of Mg Alloy[J].Plating & Finishing,2021,(7):10.[doi:10.3969/j.issn.1001-3849.2021.07.002]
备注/Memo
收稿日期: 2023-09-04 修回日期: 2023-09-25 作者简介: 刘敬春( 1982 —)男,副教授,从事材料的腐蚀防护与表面涂层研究工作, email : jcliu33@126.com 基金项目: 河北省高等学校科学技术研究项目( ZD2018224 );河北农业大学人才引进项目( ZD201717 );河北农业大学理工基金项目( LG201801 )