PDF下载 分享
[1]孙春莲*,张 靓,张明顺,等.巨介电材料的研究进展[J].电镀与精饰,2019,(12):30-34.[doi:10.3969/j.issn.1001-3849.2019.12.007]
 SUN Chunlian*,ZHANG Liang,ZHANG Mingshui,et al.Research Progress on Giant Dielectric Materials[J].Plating & Finishing,2019,(12):30-34.[doi:10.3969/j.issn.1001-3849.2019.12.007]
点击复制

巨介电材料的研究进展

参考文献/References:

[1] Cheng X, Li Z, Wu J. Colossal permittivity in ceramics of TiO2 co-doped with niobium and trivalent cation[J]. Journal of Materials Chemistry A, 2015, 3: 5805-5810.
[2] Thurnauer H. Ferroelectric ceramics: History and technology[J]. Journal of the American Ceramic Society, 1999, 82(4): 797-818.
[3] Hosono Y, Harada K, Yamashita Y. Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3[J]. Japanese Journal of Applied Physics, 2001, 40(9): 5722-5726.
[4] Yao G, Wang X, Wu Y, et al. Nb doped 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 ceramics with stable dielectric properties at high temperature[J]. Journal of the American Ceramic Society, 2012, 95(2): 614-618.
[5] Li L, Zhang B. The effect of bimodal model on the ultra-broad temperature stable BaTiO3-Na0.5Bi0.5TiO3-Nb2O5 system[J]. Scripta Materialia, 2016, 114: 170-174
[6] Lu D, Yue Y, Sun X. Novel X7R BaTiO3 ceramics co-doped with La3+ and Ca2+ ions[J]. Journal of Alloys and Compounds, 2014, 586: 136-141.
[7] Wu J, Nan C W, Lin Y, et al. Giant dielectric permittivity observed in Li and Ti doped NiO[J]. Physical Review Letters, 2002, 89(21):217601.
[8] Kim J H, Lee Y, Souchkov A, et al. Infrared study of giant dielectric constant in Li and Ti doped NiO[J]. Physics, 2004, 70(17):3352-3359.
[9] Lin Y, Jiang L, Zhao R, et al. High-permittivity core/shell tructured NiO-based ceramics and their dielectric response mechanism[J]. Physical Review B, 2005, 72(1):14-20.
[10] Lin Y, Wang J, Jiang L, et al. High permittivity Li and Al doped NiO ceramics[J]. Applied Physics Letters, 2004, 85(23):5664-5666.
[11] Ramirez A P, Subramanian M A, Gardel M, et al. Giant dielectric constant response in a copper-titanate[J]. Solid State Communications, 2000, 115(5): 217-220.
[12] Liu Y, Withers R L, Wei X Y. Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12[J]. Physical Review B, 2005, 72(13): 134-140.
[13] Chung S Y, Kim I D, Kang S J L. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate[J]. Nature Materials, 2004, 3(11): 774-778.
[14] Sinclair D C, Adams T B, Morrison F D, et al. CaCu3Ti4O12: One-step internal barrier layer capacitor[J]. Applied Physics Letters, 2002, 80(12): 2153-2155.
[15] Li W, Schwartz R W. Maxwell-wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics[J]. Physical Review B, 2007, 22(1): 33-36.
[16] Prakash B S, Varma K B R. Influence of sintering conditions and doping on the dielectric relaxation originating from the surface layer effects in CaCu3Ti4O12 ceramics[J]. Journal of the Physics and Chemistry of Solids, 2007, 68(4): 490-502.
[17] Sun L; Wang Z; Hao W, et al. Influence of zirconium doping on microstructure and dielectric properties of CaCu3Ti4O12 synthesized by the sol-gel method[J]. Journal of Alloys and Compounds, 2015, 651: 283-289.
[18] Rani S; Ahlawat N, Punja R, et al. Dielectric and impedance studies of La and Zn co-doped complex perovskite CaCu3Ti4O12 ceramic[J]. Ceramics International, 2018, 44(18): 23125-23136.
[19] 杨昌辉, 周小莉, 徐刚, 等. 溶胶-凝胶法制备巨介电常数材料CaCu3Ti4O12[J]. 硅酸盐学报, 2006, 34(6): 753-756.
[20] Hu W, Liu Y, Withers R L, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials, 2013, 12(9): 821-826.
[21] Zhao X G, Liu P, Song Y C, et al. Retraction: Origin of colossal permittivity in (In1/2Nb1/2)TiO2 via broadband dielectric spectroscopy[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 24475-24475.
[22] Li Z, Luo X, Wu W, et al. Niobium and divalent-modified titanium dioxide ceramics: Colossal permittivity and composition design[J]. Journal of the American Ceramic Society, 2017, 100(12): 1-7.
[23] Yang C, Wei X, Hao J. Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2[J]. Ceramics International, 2018, 44(11): 12395-12400.
[24] Ke S, Li T, Ye M, et al. Origin of colossal dielectric response in (In + Nb) co-doped TiO2 rutile ceramics: a potential electrothermal material[J]. Sciencific Reports, 2017, 7: 10144-10153.
[25] Nachaithong T, Thongbai P, Maensiri S. Colossal permittivity in (In1/2Nb1/2)xTi1-xO2 ceramics prepared by a glycine nitrate process[J]. Journal of the European Ceramic Society, 2017, 37(2): 655-660.

备注/Memo

收稿日期: 2019-06-27;修回日期: 2019-11-17
通信作者: 孙春莲,email:suncl1972@163.com

更新日期/Last Update: 2019-12-10