GAO Xinxin,LIANG Xiaoming*,LIU Baocheng,et al.Microstructure and Corrosion Resistance of New Dissimilar Steel Welded Joint[J].Plating & Finishing,2019,(9):13-17.[doi:10.3969/j.issn.1001-3849.2019.09.003]
新型异种钢接头组织和耐腐蚀性能研究
- Title:
- Microstructure and Corrosion Resistance of New Dissimilar Steel Welded Joint
- 文献标志码:
- A
- 摘要:
- 采用金相实验、电化学实验和全浸腐蚀实验研究了异种高强钢焊接接头的显微组织特性以及腐蚀行为,并利用SEM对腐蚀后的形貌进行观察。结果表明,焊接接头靠近低强度一侧母材的热影响区伏打电位最负、更易失去电子,自腐蚀电位最负、析氢电位最正,容易发生腐蚀和析氢反应。全浸腐蚀实验结果表明,焊接接头的母材区最耐蚀,两侧的热影响区腐蚀最严重,有大量的腐蚀坑,可见由于此区域组织粗大、夹杂物和缺陷多造成的。
- Abstract:
- The microstructure and corrosion behavior of dissimilar high-strength steel welded joint were studied by metallographic test, electrochemical test and immersion corrosion test. The morphology of the corrosion was analyzed by SEM. The results show that the volt potential is the most negative and more easily lose electrons in the heat affected zone (HAZ) of base metal near the side of low strength steel in welded joint, and the corrosion potential is the most negative.The hydrogen evolution potential is the most positive, and the corrosion and hydrogen evolution reaction are easy to occur. The results of full immersion corrosion test show that the parent material area of the welded joint has the best corrosion resistance. The most serious corrosion is found in the HAZ on both sides. A large number of corrosion pits, which are caused by the coarse structure, inclusions and defects, can be observed in this zone.
参考文献/References:
[1] 胡小锋, 姜海昌, 赵明久, 等. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报,2018, 54(1): 1-10.
[2] Billingham J, Sharp JV, SpurrierJ.Review of the performance of high strength steel used offshore[M]. London: Health and Safety Executive, 2003.
[3] Batt C, Ddodson J, Robinson M J. Hydrogen embrittlement of cathodically protected high strength steel in sea water and seabed sediment[J]. British Corrosion Journal,2002, 37(3): 194-198.
[4] 高心心, 郭建章, 张海兵. 1000MPa级高强钢焊接件的氢脆敏感性研究[J]. 材料导报, 2017, 31(3): 93-104.
[5] 汪杰, 郭鹏飞, 王晓南, 等. X100管线钢激光焊接接头显微组织及耐腐蚀性能研究[J]. 应用激光, 2017, 37(6): 835-841.
[6] 高心心, 郭建章, 潘大伟, 等. 900MPa级高强钢气保焊焊接接头的组织与性能[J]. 金属热处理, 2017,42(6):36-41.
[7] 王洪亮, 曾祥浩, 张欣盟, 等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能[J]. 材料研究学报, 2018, 32(6). 473-480.
[8] Astic L, Saucier D. The scanning kelvin probe; a new technique for the in situ analysis of the delamination of organic coatings[J]. Progress in Organic Coatings, 1996, 27(27): 261-267.
[9] Domínguez-Crespo M A, Torres-Huerta A M,Onofre-Bustamante E, et al. Corrosion studies of PPy/Ni organic-inorganic hybrid bilayer coatings on commercial carbon steel[J]. Journal of Solid State Electrochemistry, 2015, 19(4): 1-17.
[10] Nazarov A P, Thierry D. Scanning Kelvin probe study of metal/polymer interfaces[J]. Electrochimica Acta, 2004, 49(17-18): 2955-2964.
[11] 刘全坤. 材料成形基本原理[M]. 合肥: 机械工业出版社, 2010.
[12] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel-part 1:calibration of the kelvinprobe and basic delamination mechanism[J]. Corrosion Science, 1999, 41(3): 547-578.
[13] Grundmeier G, Schmidt W, Stratmann M. Corrosion protection by organic coatings: Electrochemical mechanism and novel methods of investigation[J]. Electrochimica Acta, 2000, 45(15-16): 2515-2533.
[14] 郭建章, 高心心, 张海兵. 异种高强钢气保焊焊接接头的氢脆敏感性[J]. 金属热处理, 2017, 42(7): 55-60.
[15] 喻巧红, 刘超, 庞晓露, 等. Q235焊接接头的缝隙腐蚀行为[J]. 金属学报, 2014, 50(11): 1319-1326.
[16] 高心心. 异种高强钢焊接接头腐蚀及氢脆性能研究[D]. 青岛: 青岛科技大学, 2017.
相似文献/References:
[1]高心心,梁晓明*,刘 雨,等.0.9强度比异种钢接头的氢脆性能[J].电镀与精饰,2019,(8):5.[doi:10.3969/j.issn.1001-3849.2019.08.002]
GAO Xinxin,LIANG Xiaoming*,LIU yu,et al.Hydrogen Embrittlement of Dissimilar Steel Welded Joints with 0.9 Strength Ratio[J].Plating & Finishing,2019,(9):5.[doi:10.3969/j.issn.1001-3849.2019.08.002]
[2]王金荣,许 强,逯志强,等.980 MPa级汽车用钢氢致延迟断裂性能[J].电镀与精饰,2021,(1):41.[doi:10.3969/j.issn.1001-3849.2021.01.0080]
WANG Jinrong,XU Qiang,LU Zhiqiang,et al.Hydrogen Induced Delayed Fracture of 980 MPa Grade Automotive Steel[J].Plating & Finishing,2021,(9):41.[doi:10.3969/j.issn.1001-3849.2021.01.0080]
[3]姚国林*,罗新宇,陈子然.Q345B钢表面激光熔覆工艺的PLC控制与涂层性能研究[J].电镀与精饰,2023,(12):42.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.006]
Yao Guolin*,Luo Xinyu,Chen Ziran.Study on laser cladding technology on Q345B steel surface controlled by PLC and it s coating property[J].Plating & Finishing,2023,(9):42.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.006]
[4]钱绍祥.激光喷丸处理对铁基熔覆层的组织演变和磨损性能的影响[J].电镀与精饰,2024,(9):40.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.006]
Qian Shaoxiang.Effects of laser peening on the microstructure evolution and wear performance of Fe-based cladding layer[J].Plating & Finishing,2024,(9):40.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.006]
[5]所彭帮*,龙 金,胡林荣,等.Ni5Al/85Ni-15C复合涂层的性能及应用[J].电镀与精饰,2024,(12):61.
Suo Pengbang *,Long Jin,Hu Linrong,et al.Performance and application of Ni5Al/85Ni-15C composite coating[J].Plating & Finishing,2024,(9):61.
[6]菅光霄*,王清华,药晓江,等.doi: 10.3969/j.issn.1001-3849.2025.02.00542CrMo钢表面激光熔覆复合涂层的显微组织与性能[J].电镀与精饰,2025,(02):30.
Chen Yan,Xu Huanhuan.Microstructure and properties of laser cladding composite coating on 42CrMo steel surface Jian Guangxiao1*, Wang Qinghua1, Yao Xiaojiang1, Ding Yuanhao1,[J].Plating & Finishing,2025,(9):30.
备注/Memo
收稿日期: 2019-04-01;修回日期: 2019-04-22
通信作者: 梁晓明,email:398386555@qq.com
基金项目: 山东省重点研发计划(2018GNC112007),山东省高校科研计划项目(J18KA015)