PDF下载 分享
[1]杨金爽,邱健睿,王宏智*.金属-聚苯胺纳米复合材料在电化学传感器中的应用[J].电镀与精饰,2020,(6):38-46.[doi:10.3969/j.issn.1001-3849.2020.06.0090]
 YANG Jinshuang,QIU Jianrui,WANG Hongzhi*.Application of Metal-Polyaniline Nanocomposites in Electrochemical Sensors[J].Plating & Finishing,2020,(6):38-46.[doi:10.3969/j.issn.1001-3849.2020.06.0090]
点击复制

金属-聚苯胺纳米复合材料在电化学传感器中的应用

参考文献/References:

[1] Lukose R, Zurauskiene N, Balevicius S, et al. Hybrid graphene-manganite thin film structure for magnetoresistive sensor application[J]. Nanotechnology, 2019, 30(35): 127424.
[2] 刘奔, 张行颖, 陈韶云, 等. 一维有序聚苯胺纳米阵列的制备及电化学储能性能[J]. 高等学校化学学报, 2019, 40(3): 498-507.
Liu B, Zhang H Y, Chen S Y, et al. Preparation and electrochemical energy storage performance of one dimensional orderly polyaniline nanowires array[J]. Chemical Journal of Chinese Universities, 2019, 40(3): 498-507 (in Chinese).
[3] Ganesan S, Muruganandham A, Mounasamy V, et al. Highly selective dimethylamine sensing performance of TiO2 thin films at room temperature[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(5):3131-3139.
[4] Busacca C, Donato A, Lo Faro M, et al. CO gas sensing performance of electrospun Co3O4 nanostructures at low operating temperature[J]. Sensors and Actuators B-chemical, 2020, 303: 127193.
[5] Jo S, Lee W, Park J, et al. Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva[J]. Sensors and Actuators B-chemical, 2020, 304.
[6] Wu J, Wu Z X, Ding H J, et al. Multifunctional and high-sensitive sensor capable of detecting humidity, temperature and flow stimuli using an integrated microheater[J]. Acs Applied Materials &Interfaces, 2019, 11(46):43383-43392.
[7] Zheng T, Wu J G. Electric field compensation effect driven strain temperature stability enhancement in potassium sodium niobate ceramics[J]. Acta Materialia, 2020, 182: 1-9.
[8] Karki S B, Hona R K, Ramezanipour F. Effect of structure on sensor properties of oxygen-deficient perovskites, A(2)BB O-5 (A = Ca, Sr B = Fe B = Fe, Mn) for oxygen, carbon dioxide and carbon monoxide sensing[J]. Journal of Electronic Materials, 2019, 49(2): 1557-1567.
[9] Zhang W Y, Wu Z F, Hu J D, et al. Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives[J]. Sensors and Actuators B-chemical, 2020, 304: 127233.
[10] Chen X D, Li B T, Qiao Y, et al. Preparing polypyrrole-coated stretchable textile via low-temperature interfacial polymerization for highly sensitive strain sensor[J]. Micromachines, 2019, 10(11):788.
[11] Nair S S, Illyaskutty N, Tam B, et al. ZnO@ZIF-8: gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity[J]. Sensors and Actuators B-chemical, 2020, 304: 127184.
[12] Wu C H, Zhu Z, Chang H M, et al. Pt@NiO core-shell nanostructure for a hydrogen gas sensor[J]. Journal of Alloys and Compounds, 2020, 814: 151815.
[13] 王霞, 侯丽, 张代雄, 等. 聚苯胺在防腐方面的研究及应用现状[J]. 表面技术, 2019, 48(1): 208-215.
Wang X, Hou L, Zhang D X, et al. .Research and application of polyaniline in anti-corrosion[J]. Surface Technology, 2019, 48(1): 208-215 (in Chinese).
[14] Dang W, Shen Y, Lin M, et al. Noble-metal-free electrocatalyst based on a mixed CoNi metal-organic framework for oxygen evolution reaction[J]. Journal of Alloys Compounds, 2019, 792: 69-76.
[15] Asadian E, Ghalkhani M, Shahrokhian S, et al. Electrochemical sensing based on carbon nanoparticles: A review[R] .Sensors and Actuators B: Chemical, 2019, 293:183-209.
[16] Zhang B, Zhao B, Huang S, et al. One-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites for catalytic applications[J]. Crystengcomm, 2012, 14(5): 1542-1544.
[17] Cho W, Park S, Kim S. Effect of monomer concentration on interfacial synthesis of platinum loaded polyaniline nanocomplex using poly(styrene sulfonic acid) [J]. Synthetic Met, 2011, 161(21-22): 2446-2450.
[18] Xu X, Liu X, Yu Q, et al. Architecture-adapted raspberry-like gold@polyaniline particles: facile synthesis and catalytic activity[J]. Colloid and Polymer Science, 2012, 290(17): 1759-1764.
[19] Anju C, Palatty S. Ternary doped polyaniline-metal nanocomposite as high performance supercapacitive Material[J]. Electrochim Acta, 2019, 299: 626-635.
[20] Wang X, Liu W, Li C, et al. Synthesis of polyaniline using electrochemical polymerization and application in a sensitive DNA biosensor with [Ru(bpy)3]2+ functionalized nanoporous gold composite as label[J]. Monatsh Chem, 2013, 144(12): 1759-1765.
[21] Jing S, Xing S, Yu L, et al. Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid[J]. Mater Lett, 2007, 61(13): 2794-2797.
[22] Barkade S S, Naik J B, Sonawane S H. Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapor sensing[J]. Colloids and surfaces A: Physicochemical and Engineering Aspects, 2011, 378(1-3): 94-98.
[23] Kong L, Lu X, Jin E, et al. Templated synthesis of polyaniline nanotubes with Pd nanoparticles attached onto their inner walls and its catalytic activity on the reduction of p-nitroanilinum[J]. Composites Science and Technology, 2009, 69(5): 561-566.
[24] Ali S, Genaro A G. Uttandaraman S, Facile one step-synthesis and characterisation of high aspect ratio core-shell copper-polyaniline nanowires[J]. The Canadian Journal of Chemical Engineering, 2014, 92(7): 1207-1212.
[25] Xie Y J, Song Z X, Yao S W, et al. High capacitance properties of electrodeposited PANI-Ag nanocable arrays[J]. Materials Letters, 2012, 86: 77-79.
[26] Hegarty C, Mckillop S, Mcglynn R J, et al. Microneedle array sensors based on carbon nanoparticle composites: interfacial chemistry and electroanalytical properties[J]. Journal of Materials Science, 2019, 54(15): 10705-10714.
[27] 张洁. 聚苯胺/无机纳米粒子复合材料的制备及其传感特性研究[D] .太原:太原理工大学, 2016.
[28] Zhou H H, Peng Z, Jiao Y G, et al. Electro-oxidation treatment of Sn/PANI electrode and electrocatalytic activity of Pt/Sn hydroxide/PANI composite electrodes[J]. Journal of Central South University of Technology: English Edition, 2008, 15(5): 593-598.
[29] Yan R, Jin B, Preparation and electrochemical performance of polyaniline/Pt microelectrodes[J]. Electrochimica Acta, 2014, 115: 449-453.
[30] 冯文成. 铂粒子修饰的聚苯胺/醋酸纤维素复合膜电极对甲醛的催化氧化[J]. 化工新型材料, 2009, 37(10): 99-100.
Feng W C. Electrocatalytic oxidation of formaidehyde with PANI/CA composite film modified by platinum particles[J]. New Chemical Materials, 2009, 37(10): 99-100 (in Chinese).
[31] 陈忠平, 褚道葆, 秦家成, 等. 甲醛在聚苯胺载铂电极上的电催化氧化[J]. 吉林大学学报(理学版), 2014,52(6):1331-1336.
Chen Z P, Chu D B, Qin J C, et al. Electrocatalytic oxidation of formaldehyde on platinum load on polyaniline electrode[J]. Journal of Jilin University (Science Edition), 2014, 52(6):1331-1336 (in Chinese).
[32] Prathap M U, Thangarasu P , Rajendra S. Cu nanoparticles supported mesoporous polyaniline and its applications towards non-enzymatic sensing of glucose and electrocatalytic oxidation of methanol[J]. Journal of Polymer Research, 2013, 20(2): 83.
[33] Yano J, Shiraga T, Kitani A. Dispersed platinum and tin polyaniline film electrodes for the anodes of the direct methanol fuel cell[J]. Journal of Solid State Electrochemistry, 2008, 12(9): 1179-1182.
[34] Nagashree K L, Ahmed M F. Electrocatalytic oxidation of methanol on Cu modified polyaniline electrode in alkaline medium[J]. Journal of Applied Electrochemistry, 2009, 39(3): 403-410.
[35] Eswaran M, Dhanusuraman R, Tsai, et al. One-step preparation of graphitic carbon nitride/polyaniline/palladium nanoparticles based nanohybrid composite modified electrode for efficient methanol electro-oxidation[J]. Fuel, 2019, 251: 91-97.
[36] Pacini M, Hatchett D W. Preparation and characterization of grafoil/Ni and polyaniline/Ni composites from the controlled electrochemical reduction of NiCl42-[J]. Electrochimica Acta, 2018, 292:602-613.
[37] Kim K S, Kim H Y, Choi H C, et al. Ultrathin-polyaniline-coated Pt-Ni alloy nanooctahedra for the electrochemical methanol oxidation reaction[J]. Chemistry-a European Journal, 2019, 25(29):7185-7190.
[38] Shi L, Wang Z F, Chen X L, et al. Preparation of Pt-Pd/PANI/graphene nanosheets composites as electrocatalysts for direct methanol fuel cell[J]. International Journal of Electrochemical Science, 2019,14(8): 7104-7115.
[39] Oskueyan G, Mansour L. Electrodeposition of nanostructured Pt-Pd bimetallic catalyst on polyaniline-camphorsulfonic acid/graphene nanocomposites for methanol electrooxidation[J]. Journal of Applied Electrochemistry, 2019, 49(8): 755-765.
[40] Zheng Y, Wang H, Ma Z. A nanocomposite containing prussian blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125[J]. Microchimica Acta, 2017, 184(11):4269-4277.
[41] Kumar V, Gupta R K, Gundampati R K, et al. Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle-reduced graphene oxide-polyaniline fabricated electrochemical sensor[J]. RSC Advances, 2018, 8(2): 619-631.
[42] Tanwar S, Annie H, Magi E. Green synthesis and characterization of novel gold nanocomposites for electrochemical sensing applications[J]. Talanta, 2013, 117: 352-358.
[43] Yang Z Y, Zheng X H, Zheng J B. Non-enzymatic sensor based on a glassy carbon electrode modified with Ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing[J]. RSC Advances, 2016, 6(63): 58329-58335.
[44] Del Castillo-Castro T, Larios R, Molina A, et al. Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites[J]. Composites Part A: Applied Science And Manufacturing, 2007, 38(1): 107-113.
[45] Liu A, Liang J S, Zhao R J, et al. Ultrasensitive sensor based on nano-Cu/polyaniline/nickel foam for monitoring H2O2 in exhaled breath[J]. Journal of Breath Research, 2018, 12(3): 36001-036001.
[46] He F, Yin J Y, Sharma G, et al. Facile fabrication of hierarchical rGO/PANI@PtNi nanocomposite via microwave-assisted treatment for non-enzymatic detection of hydrogen peroxide[J]. Nanomaterials, 2019, 9(8): 1109.
[47] 王丽媛. 聚苯胺-贵金属纳米复合材料的制备及性能研究[D] . 哈尔滨: 哈尔滨工业大学, 2010.
[48] Tian R, Chen X, Jiang N, et al. An electrochemical sensing strategy based on a three dimensional ordered macroporous polyaniline-platinum platform and a mercury(II) ion-mediated DNAzyme functionalized nanolabel[J] . Journal of Materials Chemistry B, 2015, 3(24):4805-4813.
[49] Majumdar G, Goswami M, Sarma T K, et al. Au nanoparticles and polyaniline coated resin beads for simultaneous catalytic oxidation of glucose and colorimetric detection of the product[J]. Langmuir, 2005, 21(5):1663-1667.
[50] Lu X, Ye Y, Xie Y, et al. Copper coralloid granule/polyaniline/reduced graphene oxide nanocomposites for nonenzymatic glucose detection[J]. Analytical Methods, 2014, 6(13): 4643.
[51] Shrivastav A M, Usha S P, Gupta B D. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline-Ag nanocomposite[J]. Nanotechnology, 2016, 27(34): 345501.
[52] 付燕宜. 基于三种纳米复合材料的多巴胺电化学传感研究[D]. 西安: 西北大学, 2018.
[53] Gupta A, Sanjeev K, Amit L, et al. Development of an advanced electrochemical biosensing platform for E.coli using hybrid metal-organic framework/polyaniline composite[J]. Environmental Research, 2019, 171: 395-402.
[54] Ahmadi T F, Farah S, Hossein A, et al. High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyanilinehybrid[J]. Talanta, 2019, 197: 457-464.
[55] Patel H A, Rawat M, Patel A L, et al. Celite-polyaniline supported palladium catalyst for chemoselective hydrogenation reactions[J]. Applied Organometallic Chemistry, 2019, 33(4): 4767.
[56] 宫庆华, 王淑敏, 高婷婷, 等. 不同形貌聚苯胺—过渡金属氧化物复合材料的制备及其在电化学中的应用研究进展[J] .高分子通报, 2018, 229(5):16-22.
Gong Q H, Wang S M, Gao T T, et al. Preparation of polyaniline-transition metal oxide composites with different morphologies and its applications in electrochemistry[J]. Polymer bulletin, 2018, 229(5): 16-22 (in Chinese).
[57] Weng S, Lin Z, Zhang Y, et al. Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions[J]. Reactive and Functional Polymers, 2009, 69(2): 130-136.
[58] 赵亮, 李晓霞, 郭宇翔, 等. 聚苯胺及其伪装应用研究进展[J]. 材料工程, 2019, 47(3): 42-49.
Zhao L, Li X X, Guo Y X, et al. Progress in research of polyaniline and its application in camouflage [J]. Materials Engineering, 2019, 47(3): 42-49 (in Chinese).

相似文献/References:

[1]李发闯,苏 光,郭战永,等.电化学合成聚苯胺膜及其腐蚀防护性能[J].电镀与精饰,2019,(10):5.[doi:10.3969/j.issn.1001-3849.2019.10.002]
 LI Fachuang,SU Guang,et al.Electrochemical Synthesis and Corrosion Protective Behavior of Polyaniline Film[J].Plating & Finishing,2019,(6):5.[doi:10.3969/j.issn.1001-3849.2019.10.002]
[2]许秀婷,吉连忠,陈书文,等.聚苯胺-TiO2复合膜对316L不锈钢耐蚀性能的影响[J].电镀与精饰,2023,(1):28.[doi:10.3969/j.issn.1001-3849.2023.01.005]
 Xu Xiuting,Ji Lianzhong,Chen Shuwen,et al.Effect of polyaniline-TiO 2 composite film on corrosion resistance of 316L stainless steel[J].Plating & Finishing,2023,(6):28.[doi:10.3969/j.issn.1001-3849.2023.01.005]
[3]巩鹏妮,弓巧娟 *,梁云霞,等.镍钴硫化物、石墨烯与聚苯胺复合材料在超级电容器中的应用研究进展[J].电镀与精饰,2023,(3):90.[doi:10.3969/j.issn.1001-3849.2023.03.013]
 Gong Pengni,Gong Qiaojuan *,Liang Yunxia,et al.Research progress of Ni-Co sulfide graphene and polyaniline composites applied in supercapacitors[J].Plating & Finishing,2023,(6):90.[doi:10.3969/j.issn.1001-3849.2023.03.013]

备注/Memo

收稿日期: 2020-01-07;修回日期: 2020-04-02
作者简介: 杨金爽,email:jinshuang_yang@126.com
通信作者: 王宏智,email:wanghz@tju.edu.cn

更新日期/Last Update: 2020-06-10