ZHANG Ziqin,NIU Binna,LI Haojie,et al.Research Progress in Composite Modification of Bismuth Telluride Based Thermoelectric Materials[J].Plating & Finishing,2021,(11):48-54.[doi:10.3969/j.issn.1001-3849.2021.11.009]
碲化铋基热电材料复合改性的研究进展
- Title:
- Research Progress in Composite Modification of Bismuth Telluride Based Thermoelectric Materials
- 文献标志码:
- A
- 摘要:
- 近年来Bi2Te3基热电材料被广泛用于医疗器械、电子、航空航天等各种商业领域,材料的性能已经逐步得到提高。目前已有大量关于通过掺杂、纳米化或与其他材料复合来提高碲化铋基热电材料热电性能的报道,而材料复合是其中一种重要的优化手段。本文重点对碲化铋同有机与无机材料的复合改性进行了介绍,总结了复合不同类型的物质对材料热电性能的影响,对比了不同方法下所制备的复合材料的热电参数,并对Bi2Te3基热电材料复合改性的未来发展进行了展望。
- Abstract:
- In recent years, bismuth telluride based thermoelectric materials have been widely used in medical devices, electronics, aerospace and other commercial fields, and their properties have been gradually improved. At present, there are a lot of reports on improving the thermoelectric properties of bismuth telluride based thermoelectric materials by doping, nanoparticle or compounding with other materials, and material compounding is one of the important optimization methods. In this paper, the composite modification of bismuth telluride with organic and inorganic materials is introduced, the influence of different types of composite materials on the thermoelectric properties of materials is summarized, the thermoelectric parameters of the composites prepared by different methods are compared, and the future development of the composite modification of bismuth telluride based thermoelectric materials is prospected.
参考文献/References:
[1] 于凤荣, 陈思彤, 刘文鑫, 等. Bi2Te3热电材料的研究现状与发展趋势[J]. 燕山大学学报, 2017, 41(3): 204-218.
Yu F R, Chen S T, Liu W X, et al. Research status and development trend of Bi2Te3 thermoelectric materials[J]. Journal of Yanshan University, 2017, 41(3): 204-218 (in Chinese).
[2] 张艳. 热电材料的研究进展及应用[J]. 电工材料, 2020, 6: 7-10.
Zhang Y. Research progress and application of thermoelectric materials[J]. Electrical Materials, 2020, 6: 7-10(in Chinese).
[3] 王琳. AgPb10SbTe12热电材料的液相可控合成及其电学输运性能研究[D]. 黑龙江: 哈尔滨工业大学, 2011.
[4] 高亚鸽. 碲化铋与石墨烯复合材料的三阶非线性光学性质的研究[D]. 河南: 河南大学, 2018.
[5] 梁贝贝. 石墨烯复合碲化铋基热电材料的制备及性能研究[D]. 上海: 东华大学, 2013.
[6] Ju H, Kim J. Preparation and structure dependent thermoelectric properties of nanostructured bulk bismuth telluride with graphene, Journal of Alloys & Compounds. 2016, 664: 639-647.
[7] 李佳. 石墨烯/碲化铋/PEDOT:PSS纳米复合热电材料的制备与性能探究[D]. 上海: 上海应用技术大学, 2019.
[8] 孙希静, 赵敬红, 刘艳玲, 等. Bi2Te3/炭黑复合材料的制备及热电性能[J]. 复合材料学报, 2017, 34(5): 1075-1081.
Sun X J, Zhao J H, Liu Y L, et al. Preparation and thermoelectric properties of Bi2Te3/carbon black composites[J]. Journal of Composite Materials, 2017, 34(5): 1075-1081(in Chinese).
[9] 孙希静. 低热导率复合材料结构设计与热电性能研究[D]. 四川: 四川师范大学, 2017.
[10] 李颖. 柔性Bi2Te3/SWCNT复合热电薄膜材料及器件性能研究[D]. 安徽: 中国科学技术大学, 2020.
[11] Qun J, Song J, Yang Z, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 2019, 18(1): 62-68.
[12] 许晗, 王为. MWNTs/Bi2Te3薄膜温差电材料的电化学制备及表征[C]. 第九届全国表面工程大会暨第四届全国青年表面工程论坛论文集, 中国机械工程学会表面工程分会: 中国腐蚀与防护学会涂料涂装及表面保护技术专业委员会, 2012: 10.
[13] Priyanka J, Mohammad K, Nowshad A, et al. Recycled carbon fibre/Bi2Te3 and Bi2S3 hybrid composite doped with MWCNTs for thermoelectric applications[J]. Composites Part B, 2019, 175: 107085.
[14] Bark H, Kim J S, Kim H, et al. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix[J]. Current Applied Physics, 2013, 13: S111-S114.
[15] Kim K T, Choi S Y, Shin E H, et al. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite[J]. Carbon, 2013, 52: 541-549.
[16] Wang L, Jia X L, Wang D G, et al. Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites[J]. Synthetic Metals, 2013, 181: 79-85.
[17] 阿拉腾沙嘎. 掺杂Ag,Au,SiO2的纳米碲化铋的制备及热电性能研究[D]. 吉林: 长春理工大学, 2012.
[18] Zhu T J, Liu Y Q, Zhao X B. Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes [J]. Materials Research Bulletin, 2008, 43(11): 2850-2854.
[19] 梁少军. 各向异性层状碲化铋和硒化锡基材料的热电性能优化[D]. 广东:暨南大学, 2018.
[20] Zhang T, Jiang J, Xiao Y, et al. In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance [J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3071-3074.
[21] Jiang C, Fan X, Feng B, et al. Thermal stability of p-type polycrystalline Bi2Te3 based bulks for the application on thermoelectric power generation[J]. Journal of Alloys and Compounds, 2017, 692: 885-891.
[22] Zhang C H, de la Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering[J]. Nano Energy, 2016, 30: 630-638.
[23] 端思晨. 碲化铋的织构化和复合材料及硫属热电材料的电输运研究[D]. 上海: 上海大学, 2020.
[24] Oh T S, Hyun D B, Kolomoets N V. Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys[J]. Scripta Materialia, 2000, 42(9): 849-854.
[25] J. J. Shen, Z. Z. Yin, S. H. Yang, et al. Improved thermoelectric performance of p-type bismuth antimony telluride bulk alloys prepared by hot forging[J]. Journal of Electronic Materials, 2011, 40(5): 1095-1099.
[26] 杨嵛茜. 复合第二相的碲化铋基热电材料制备及性能研究[D]. 浙江: 浙江大学, 2020.
[27] 豆远尧. ZnO复合Bi2Te3热电材料光阳极的制备及其应用[D]. 重庆: 重庆大学, 2016.
[28] 曾德波, 徐长进, 李松. CeO2复合催化材料的界面调控与催化性质[C]. 中国稀土学会2020学术年会暨江西(赣州)稀土资源绿色开发与高效利用大会摘要集, 中国稀土学会、江西省科学技术协会、赣州市人民政府:中国稀土学会, 2020: 463.
[29] 崔文蓉, 陈阵, 余强, 等. 纳米CeO2颗粒改性钛基二氧化铅复合电极材料的析氧电催化活性研究[J]. 化学研究与应用, 2017, 29(9): 1380-1386.
Cui W R, Chen Z, Yu Q, et al. Study on the electrocatalytic activity for oxygen evolution of titanium-based lead dioxide composite electrode materials modified by nano-CeO2 particles[J]. Chemical Research & Application, 2017, 29(9): 1380-1386(in Chinese).
[30] 李喜贵, 王运志, 王海英, 等. 热电材料的研究进展[J]. 河南师范大学学报(自然科学版), 2005, 3: 47-51.
Li X G, Wang Y Z, Wang H Y, et al. Research progress of thermoelectric materials[J]. Journal of Henan Normal University (Natural Science Edition), 2005, 3: 47-51(in Chinese).
[31] 赖春花. 聚噻吩及聚芴衍生物/无机复合热电材料的制备与性能研究[D]. 广东:深圳大学, 2016.
[32] Zhao X, Zhao C S, J Y F, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices[J]. Journal of Power Sources, 2020, 479: 229044.
[33] 赵轩. 碲化铋/纤维素纤维复合纸基热电材料的制备与机理研究[D]. 山东: 齐鲁工业大学, 2020.
[34] Zhang B, Sun J, Katz H E, et al. Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites [J]. ACS applied Materials & Interfaces, 2010, 2(11): 3170-3178.
[35] 田子韩. 聚(3,4-乙烯二氧噻吩)/无机杂化复合材料的制备及热电性能的研究[D]. 天津: 天津工业大学, 2019.
[36] Hou W K, Nie X L, Zhao W Y, et al. Fabrication and excellent performance of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy, 2018, 50: 766-776.
[37] 李鹏, 聂晓蕾, 田烨, 等. Bi0.5Sb1.5Te3/环氧树脂柔性复合热电厚膜的制备及其面内制冷性能(英文)[J]. 无机材料学报, 2019, 34(6): 679-684.
Li P, Nie X L, Tian H, et al. Preparation of Bi0.5Sb1.5Te3/epoxy resin flexible composite thermoelectric thick film and its in-plane cooling performance[J]. Journal of Inorganic Materials, 2019, 34(6): 679-684(in Chinese).
[38] Kim S J, We J H, Cho B J. A wearable thermoelectric generator fabricated on a glass fabric [J]. Energy & Environmental Science, 2014, 7(6): 1959-1 965.
[39] Lai C, Li J, Pan C, et al. Preparation and characterization of Bi2Te3 /graphite/polythiophene thermoelectric composites [J]. Journal of Electronic Materials, 2016, 45(10): 5246-5252.
[40] 王诘哲. 聚乳酸基热电复合材料及器件的制备和性能研究[D]. 北京: 清华大学, 2019.
[41] 李亚丹. N型Bi2Te3/CH3NH3I有机无机复合热电薄膜的制备与性能研究[D]. 广东: 深圳大学, 2017.
[42] 王斌, 邹贺隆, 刘雨, 等. 有机热电材料研究进展[J]. 南昌航空大学学报(自然科学版), 2020, 34(1): 31-42.
Wang B, Zou H L, Liu Y, et al. Research progress of organic thermoelectric materials[J]. Journal of Nanchang Hangkong University (Natural Science Edition), 2020, 34(1): 31-42(in Chinese).
相似文献/References:
[1]胡佳琦,邱 爽,王亚妮,等. 二甲基亚砜有机溶液中Sb-Te薄膜热电材料的电沉积制备 [J].电镀与精饰,2023,(10):83.[doi:10.3969/j.issn.1001-3849.2023.10.014]
Hu Jiaqi,Qiu Shuang,Wang Yani,et al.Electrolytic deposition of Sb-Te thin-film thermoelectric materials in DMSO organic solution[J].Plating & Finishing,2023,(11):83.[doi:10.3969/j.issn.1001-3849.2023.10.014]
备注/Memo
收稿日期: 2021-02-19;修回日期: 2021-04-08
作者简介: 张自勤(1999-),女,天津人,本科生,Email:2858234998@qq.com
*通信作者: 李菲晖(1982-),女,天津人,博士,副教授,Email:tjlifeihui@tjcu.edu.cn
基金项目: 国家自然科学