PDF下载 分享
[1]张自勤,牛斌娜,李豪杰,等.碲化铋基热电材料复合改性的研究进展[J].电镀与精饰,2021,(11):48-54.[doi:10.3969/j.issn.1001-3849.2021.11.009]
 ZHANG Ziqin,NIU Binna,LI Haojie,et al.Research Progress in Composite Modification of Bismuth Telluride Based Thermoelectric Materials[J].Plating & Finishing,2021,(11):48-54.[doi:10.3969/j.issn.1001-3849.2021.11.009]
点击复制

碲化铋基热电材料复合改性的研究进展

参考文献/References:

[1] 于凤荣, 陈思彤, 刘文鑫, 等. Bi2Te3热电材料的研究现状与发展趋势[J]. 燕山大学学报, 2017, 41(3): 204-218.
Yu F R, Chen S T, Liu W X, et al. Research status and development trend of Bi2Te3 thermoelectric materials[J]. Journal of Yanshan University, 2017, 41(3): 204-218 (in Chinese).
[2] 张艳. 热电材料的研究进展及应用[J]. 电工材料, 2020, 6: 7-10.
Zhang Y. Research progress and application of thermoelectric materials[J]. Electrical Materials, 2020, 6: 7-10(in Chinese).
[3] 王琳. AgPb10SbTe12热电材料的液相可控合成及其电学输运性能研究[D]. 黑龙江: 哈尔滨工业大学, 2011.
[4] 高亚鸽. 碲化铋与石墨烯复合材料的三阶非线性光学性质的研究[D]. 河南: 河南大学, 2018.
[5] 梁贝贝. 石墨烯复合碲化铋基热电材料的制备及性能研究[D]. 上海: 东华大学, 2013.
[6] Ju H, Kim J. Preparation and structure dependent thermoelectric properties of nanostructured bulk bismuth telluride with graphene, Journal of Alloys & Compounds. 2016, 664: 639-647.
[7] 李佳. 石墨烯/碲化铋/PEDOT:PSS纳米复合热电材料的制备与性能探究[D]. 上海: 上海应用技术大学, 2019.
[8] 孙希静, 赵敬红, 刘艳玲, 等. Bi2Te3/炭黑复合材料的制备及热电性能[J]. 复合材料学报, 2017, 34(5): 1075-1081.
Sun X J, Zhao J H, Liu Y L, et al. Preparation and thermoelectric properties of Bi2Te3/carbon black composites[J]. Journal of Composite Materials, 2017, 34(5): 1075-1081(in Chinese).
[9] 孙希静. 低热导率复合材料结构设计与热电性能研究[D]. 四川: 四川师范大学, 2017.
[10] 李颖. 柔性Bi2Te3/SWCNT复合热电薄膜材料及器件性能研究[D]. 安徽: 中国科学技术大学, 2020.
[11] Qun J, Song J, Yang Z, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 2019, 18(1): 62-68.
[12] 许晗, 王为. MWNTs/Bi2Te3薄膜温差电材料的电化学制备及表征[C]. 第九届全国表面工程大会暨第四届全国青年表面工程论坛论文集, 中国机械工程学会表面工程分会: 中国腐蚀与防护学会涂料涂装及表面保护技术专业委员会, 2012: 10.
[13] Priyanka J, Mohammad K, Nowshad A, et al. Recycled carbon fibre/Bi2Te3 and Bi2S3 hybrid composite doped with MWCNTs for thermoelectric applications[J]. Composites Part B, 2019, 175: 107085.
[14] Bark H, Kim J S, Kim H, et al. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix[J]. Current Applied Physics, 2013, 13: S111-S114.
[15] Kim K T, Choi S Y, Shin E H, et al. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite[J]. Carbon, 2013, 52: 541-549.
[16] Wang L, Jia X L, Wang D G, et al. Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites[J]. Synthetic Metals, 2013, 181: 79-85.
[17] 阿拉腾沙嘎. 掺杂Ag,Au,SiO2的纳米碲化铋的制备及热电性能研究[D]. 吉林: 长春理工大学, 2012.
[18] Zhu T J, Liu Y Q, Zhao X B. Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes [J]. Materials Research Bulletin, 2008, 43(11): 2850-2854.
[19] 梁少军. 各向异性层状碲化铋和硒化锡基材料的热电性能优化[D]. 广东:暨南大学, 2018.
[20] Zhang T, Jiang J, Xiao Y, et al. In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance [J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3071-3074.
[21] Jiang C, Fan X, Feng B, et al. Thermal stability of p-type polycrystalline Bi2Te3 based bulks for the application on thermoelectric power generation[J]. Journal of Alloys and Compounds, 2017, 692: 885-891.
[22] Zhang C H, de la Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering[J]. Nano Energy, 2016, 30: 630-638.
[23] 端思晨. 碲化铋的织构化和复合材料及硫属热电材料的电输运研究[D]. 上海: 上海大学, 2020.
[24] Oh T S, Hyun D B, Kolomoets N V. Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys[J]. Scripta Materialia, 2000, 42(9): 849-854.
[25] J. J. Shen, Z. Z. Yin, S. H. Yang, et al. Improved thermoelectric performance of p-type bismuth antimony telluride bulk alloys prepared by hot forging[J]. Journal of Electronic Materials, 2011, 40(5): 1095-1099.
[26] 杨嵛茜. 复合第二相的碲化铋基热电材料制备及性能研究[D]. 浙江: 浙江大学, 2020.
[27] 豆远尧. ZnO复合Bi2Te3热电材料光阳极的制备及其应用[D]. 重庆: 重庆大学, 2016.
[28] 曾德波, 徐长进, 李松. CeO2复合催化材料的界面调控与催化性质[C]. 中国稀土学会2020学术年会暨江西(赣州)稀土资源绿色开发与高效利用大会摘要集, 中国稀土学会、江西省科学技术协会、赣州市人民政府:中国稀土学会, 2020: 463.
[29] 崔文蓉, 陈阵, 余强, 等. 纳米CeO2颗粒改性钛基二氧化铅复合电极材料的析氧电催化活性研究[J]. 化学研究与应用, 2017, 29(9): 1380-1386.
Cui W R, Chen Z, Yu Q, et al. Study on the electrocatalytic activity for oxygen evolution of titanium-based lead dioxide composite electrode materials modified by nano-CeO2 particles[J]. Chemical Research & Application, 2017, 29(9): 1380-1386(in Chinese).
[30] 李喜贵, 王运志, 王海英, 等. 热电材料的研究进展[J]. 河南师范大学学报(自然科学版), 2005, 3: 47-51.
Li X G, Wang Y Z, Wang H Y, et al. Research progress of thermoelectric materials[J]. Journal of Henan Normal University (Natural Science Edition), 2005, 3: 47-51(in Chinese).
[31] 赖春花. 聚噻吩及聚芴衍生物/无机复合热电材料的制备与性能研究[D]. 广东:深圳大学, 2016.
[32] Zhao X, Zhao C S, J Y F, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices[J]. Journal of Power Sources, 2020, 479: 229044.
[33] 赵轩. 碲化铋/纤维素纤维复合纸基热电材料的制备与机理研究[D]. 山东: 齐鲁工业大学, 2020.
[34] Zhang B, Sun J, Katz H E, et al. Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites [J]. ACS applied Materials & Interfaces, 2010, 2(11): 3170-3178.
[35] 田子韩. 聚(3,4-乙烯二氧噻吩)/无机杂化复合材料的制备及热电性能的研究[D]. 天津: 天津工业大学, 2019.
[36] Hou W K, Nie X L, Zhao W Y, et al. Fabrication and excellent performance of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy, 2018, 50: 766-776.
[37] 李鹏, 聂晓蕾, 田烨, 等. Bi0.5Sb1.5Te3/环氧树脂柔性复合热电厚膜的制备及其面内制冷性能(英文)[J]. 无机材料学报, 2019, 34(6): 679-684.
Li P, Nie X L, Tian H, et al. Preparation of Bi0.5Sb1.5Te3/epoxy resin flexible composite thermoelectric thick film and its in-plane cooling performance[J]. Journal of Inorganic Materials, 2019, 34(6): 679-684(in Chinese).
[38] Kim S J, We J H, Cho B J. A wearable thermoelectric generator fabricated on a glass fabric [J]. Energy & Environmental Science, 2014, 7(6): 1959-1 965.
[39] Lai C, Li J, Pan C, et al. Preparation and characterization of Bi2Te3 /graphite/polythiophene thermoelectric composites [J]. Journal of Electronic Materials, 2016, 45(10): 5246-5252.
[40] 王诘哲. 聚乳酸基热电复合材料及器件的制备和性能研究[D]. 北京: 清华大学, 2019.
[41] 李亚丹. N型Bi2Te3/CH3NH3I有机无机复合热电薄膜的制备与性能研究[D]. 广东: 深圳大学, 2017.
[42] 王斌, 邹贺隆, 刘雨, 等. 有机热电材料研究进展[J]. 南昌航空大学学报(自然科学版), 2020, 34(1): 31-42.
Wang B, Zou H L, Liu Y, et al. Research progress of organic thermoelectric materials[J]. Journal of Nanchang Hangkong University (Natural Science Edition), 2020, 34(1): 31-42(in Chinese).

相似文献/References:

[1]胡佳琦,邱 爽,王亚妮,等. 二甲基亚砜有机溶液中Sb-Te薄膜热电材料的电沉积制备 [J].电镀与精饰,2023,(10):83.[doi:10.3969/j.issn.1001-3849.2023.10.014]
 Hu Jiaqi,Qiu Shuang,Wang Yani,et al.Electrolytic deposition of Sb-Te thin-film thermoelectric materials in DMSO organic solution[J].Plating & Finishing,2023,(11):83.[doi:10.3969/j.issn.1001-3849.2023.10.014]

备注/Memo

收稿日期: 2021-02-19;修回日期: 2021-04-08
作者简介: 张自勤(1999-),女,天津人,本科生,Email:2858234998@qq.com
*通信作者: 李菲晖(1982-),女,天津人,博士,副教授,Email:tjlifeihui@tjcu.edu.cn
基金项目: 国家自然科学

更新日期/Last Update: 2021-11-10