Li Xiaoli,Li Pengxi*,Jiang Yue,et al.Research progress of nickel-iron based materials for high efficiency alkaline oxygen evolution electrode[J].Plating & Finishing,2023,(6):60-66.[doi:10.3969/j.issn.1001-3849.2023.06.010]
镍铁基高效碱性析氧电催化剂的研究进展
- Title:
- Research progress of nickel-iron based materials for high efficiency alkaline oxygen evolution electrode
- Keywords:
- nickel-based materials ; oxygen evolution electrode ; alkaline hydrolysis ; oxygen evolution overpotential
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 析氧反应( OER )是电解水实现清洁能源生产和高效储能的重要电化学反应。镍铁基材料因其具有资源丰富、价格低廉、催化活性高及稳定性好等特点,在 OER 电催化领域具有潜在的应用价值,受到科研人员的广泛关注。本文综述了纳米镍铁基 OER 电催化剂的合成方法、化学性质和催化性能等方面的最新进展,包括层状双氢氧化物( LDH )、氧化物 / 氢氧化物氧、硫(硒)化物、氮化物以及碳复合物,并对镍铁基 OER 电催化剂进行了总结和展望。
- Abstract:
- : Oxygen evolution reaction ( OER ) is an important electrochemical reaction for electrolysis of water to achieve clean energy production and high energy storage. Nickel-iron based materials have been widely concerned by researchers for their potential application in the field of OER electrocatalysis due to their abundant resources , low price , high catalytic activity and good stability. This review article will broadly confer about recent reports on the recent progress in synthesis , chemical properties and c atalytic performance of nanosized nickel-iron based OER electrocatalysts , including layered dihydroxide ( LDH ), oxide/hydroxide oxygen , sulfur ( selenium ) compounds , nitrogen compounds and carbon complexes. On this basis , the nickel-iron based OER electrocatalysts was summarized and prospected.
参考文献/References:
[1] Gao L, Cui X, Sewell C D, et al. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(15): 8428-8469.
[2] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550.
[3] Seitz L C, Dickens C F, Kazunori N, et al. A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction[J]. Science, 2017, 353: 1011-1014.
[4] Chatenet M, Pollet B G, Dekel D R, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews, 2022, 51: 4583-4762.
[5] Lu Z, Xu W, Wei Z, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction[J]. Chemical Communications, 2014, 50(49): 6479-6482.
[6] McCrory C C L, Jung S, Ferrer I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137: 4347-4357.
[7] Lu Z, Qian L, Xu W, et al. Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity[J]. Nano Research, 2016, 9(10): 3152-3161.
[8] Chen L J, Han Q, Liu J C, et al. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity[J]. Angewandte Chemie, 2018, 57: 9392-9396.
[9] Feng X, Jiao Q, Dai Z, et al. Revealing the effect of interfacial electron transfer in heterostructured Co 9 S 8 @NiFe LDH for enhanced electrocatalytic oxygen evolution[J]. Journal of Materials Chemistry A, 2021, 9: 12244-12254.
[10] Yu L, Wu LB, McElhenny B, et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J]. Energy & Environmental Science, 2020,13: 3439-3446.
[11] Liu Y, Liang X, Gu L, et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours[J]. Nature communications, 2018, 9(1): 1-10.
[12] Landon J, Demeter E, Inoglu N, et al. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evo lution reaction in alkaline electrolytes[J]. ACS Catalysis, 2012, 2(8): 1793-1801.
[13] Zhang X, Khan I U, Huo S, et al. In-situ integration of nickel-iron Prussian blue analog heterostructure on Ni foam by chemical corrosion and partial conversion for oxygen evolution reaction[J]. Electrochimica Acta, 2020, 363: 137211.
[14] Rong W, Cw A, Sya B, et al. Hierarchically devising NiFeO x H y catalyst with surface Fe active sites for efficient oxygen evolution reaction[J]. Catalysis Today, 2021, 364: 140-147.
[15] Rajapriya A, Keerthana S, Viswanathan C, et al. Three dimensional integrated architecture of Sr-Fe LDH on hierarchical NiS framework as a flexible electrode for efficient energy storage and conversion applications[J]. Journal of Energy Storage, 2022, 53: 105091.
[16] Li J, Xu W, Luo J, et al. Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: A bifunctional electrocatalyst for overall water splitting[J]. Nano-Micro Letters, 2018 (1): 9425-9435.
[17] Yi W, Fan L, Chen W, et al. Coupling interface constructions of MoS 2 /Fe 5 Ni 4 S 8 heterostructures for efficient electrochemical water splitting[J]. Advanced Materials, 2018, 30(38): 1803151.
[18] Liu Z, Wang Y, Chen R, et al. Quaternary bimetallic phosphosulphide nanosheets derived from Prussian blue analogues: Origin of the ultra-high activity for oxygen evolution[J]. Journal of Power Sources, 2018, 403(1): 90-96.
[19] Tong L, Liu Y, Song C, et al. (Fe, Ni)S 2 @MoS 2 /NiS 2 hollow heterostructure nanocubes for high-performance alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(21): 11143-11152.
[20] Zhang G, Feng Y S, Lu W T, et al. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni 3 S 2 nanosheet arrays[J]. ACS Catalysis, 2018, 8(6): 5431-5441.
[21] Chang J, Zang S, Song F, et al. Heterostructured nickel, iron sulfide@nitrogen, sulfur co-doped carbon hybrid with efficient interfacial charge redistribution as bifunctional catalyst for water electrolysis[J]. Applied Catalysis A: General, 2022, 630: 118459.
[22] Zhu Y, Wang Y, Liu S, et al. Facile and controllable synthesis at an ionic layer level of high-performance NiFe-based nanofilm electrocatalysts for the oxygen evolution reaction in alkaline electrolyte[J]. Electrochemistry Communications, 2018, 86: 38-42.
[23] Jin Y, Yue X, Du H, et al. One-step growth of nitrogen-decorated iron-nickel sulfide nanosheets for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6: 5592-5597.
[24] Jeghan N S M, Kim D, Lee Y, et al. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics[J]. Applied Catalysis B: Environmental, 2022, 308: 121221.
[25] Lv L, Li Z, Xue K H, et al. Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation[J]. Nano Energy, 2018, 47: 275-284.
[26] Lv L, Li Z, Yunjun R, et al. Nickel-iron diselenide hollow nanoparticles with strongly hydrophilic surface for enhanced oxygen evolution reaction activity[J]. Electrochimica Acta, 2018, 286: 172-178.
[27] Wang Z, Li J, Tian X, et al. Porous nickel-iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2016, 8: 19386-19392.
[28] Jiang M, Li Y, Lu Z, et al. Binary nickel-iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting[J]. Inorganic Chemistry Frontiers, 2016, 3: 630-634.
[29] Xu H, Yang J, Ge R, et al. Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis[J]. Journal of Energy Chemistry, 2022, 71: 234-265.
[30] Liu Z, Yu H, Dong B X, et al. Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core-shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst[J]. Nanoscale, 2018, 10: 16911-16918.
[31] Zhong H X, Wang J, Zhang Q, et al. In situ coupling FeM (M = Ni, Co) with nitrogen‐ d oped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn-air battery[J]. Advanced Sustainable Systems, 2017, 1(6): 1700020.
[32] Mikaela G, Jorge F A, Schmies H, et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction (OER) electrocatalysts: The role of catalyst support and electrolyte pH[J]. Journal of the American Chemical Society, 2017, 139(5): 2070-2082.
[33] Li X, Sayyar A S, Habib K, et al. Ni 3 S 2 nanostrips@FeNi-NiFe 2 O 4 nanoparticles embedded in N-doped carbon microsphere: An improved electrocatalyst for oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2022, 617: 1-10.
[34] Liu L, Hu S, Gao K. Natural nanofiber-based stacked porous nitrogen-doped carbon/NiFe 2 O 4 nanohybrid nanosheets[J]. Cellulose, 2020, 27(1): 1021-1031.
[35] Liu G, Rui Y, Yong Z, et al. Encapsulation of Ni/Fe 3 O 4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation[J]. Nanoscale, 2018, 10: 3997-4003.
[36] Du Y, Han Y, Huai X, et al. N-doped carbon coated FeNiP nanoparticles based hollow microboxes for overall water splitting in alkaline medium[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22226-22234.
[37] Liu Z, Tang B, Gu X, et al. Selective structure transformation for NiFe/NiFe 2 O 4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chemical Engineering Journal, 2020, 395: 125170.
[38] Zhang G, Li Y, Zhou Y, et al. NiFe layered double hydroxide-derived NiO-NiFe 2 O 4 /reduced graphene oxide architectures for enhanced electrocatalysis of alkaline water splitting[J]. ChemElectroChem, 2016, 3: 1927-1936.
[39] Ruan J, Zhao W, Wu L, et al. New insights into graphite paper as electrocatalytic substrate for oxygen evolution reaction[J]. Applied Surface Science, 2016, 396(1): 1146-1154.
[40] Feng Y, Zhang H, Fang L, et al. Uniquely monodispersing NiFe alloyed nanoparticles in three-dimensional strongly linked sandwiched graphitized carbon sheets for high-efficiency oxygen evolution reaction[J]. ACS Catalysis, 2016, 6(7): 4477-4485.
[41] Li Y, He H, Fu W, et al. Hu, In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction[J]. Chemical Communications, 2016, 52: 1439-1442.
相似文献/References:
[1]李小丽,李朋喜*.镍基化合物析氧催化电极的研究进展[J].电镀与精饰,2022,(10):74.[doi:10.3969/j.issn.1001-3849.2022.10.013]
LI Zhiyong,WANG Chunxia*,ZOU Junwen,et al.Research Progress of Nickel-Based Materials for Oxygen Evolution Electrode[J].Plating & Finishing,2022,(6):74.[doi:10.3969/j.issn.1001-3849.2022.10.013]
备注/Memo
收稿日期: 2022-07-18 修回日期: 2022-08-19 作者简介: 李小丽( 1989 —),女,博士研究生,讲师, email : lixiaoli@hebeu.edu.cn * 通信作者: 李朋喜( 1987 —),男,博士,工程师,研究方向为电化学催化、电极材料、超级电容器。 email : lipenglin1207@163.com?/html>