Hou Panchao,Yang Yue,Zhou Jingmiao,et al.Preparation and corrosion resistance of ZnO/GO composite thin film electrodes[J].Plating & Finishing,2024,(10):50-55.
ZnO/GO复合薄膜电极的制备及其耐腐蚀性能
- Title:
- Preparation and corrosion resistance of ZnO/GO composite thin film electrodes
- Keywords:
- zinc oxide; graphene oxide; composite films; electrocatalysis; sol-gel method
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 本文利用溶胶-凝胶法制备了氧化锌/氧化石墨烯(GO)复合薄膜材料。通过扫描电子显微镜发现复合薄膜中的GO颗粒之间无明显间隙,致密性良好。由傅里叶红外光谱测试证实GO在氧化锌薄膜中成功掺杂。通过阳极极化测试发现,相比于氧化锌薄膜,ZnO/GO复合薄膜的腐蚀电位值正移,腐蚀电流密度值减小。交流阻抗测试说明,GO的掺杂提高了复合薄膜的耐腐蚀性能,经450 ℃退火的薄膜样品耐腐蚀性能最佳。线性扫描伏安曲线表明,ZnO/GO复合薄膜的电流密度高于ZnO薄膜,说明ZnO的复合提高了薄膜材料的电催化活性。
- Abstract:
- In this paper, ZnO/ graphene oxide (GO) composite thin film materials were prepared by sol-gel method. It was found by scanning electron microscopy that there was no obvious gap between the GO particles in the composite film, and the density was good. The successful doping of GO in the ZnO film was confirmed by Fourier infrared spectroscopy test. By anodic polarization test, it was found that the corrosion potential value of ZnO/GO composite film was positively shifted and the value of corrosion current density was decreased compared with ZnO film. The AC impedance test indicated that the corrosion resistance of the composite films was improved by doping of GO. The best corrosion resistance was obtained for the film samples annealed at 450 ℃. Linear scanning voltammetry curves showed that the current density of ZnO/GO composite films was higher than that of ZnO films, indicating that the electrocatalytic activity of the film material was improved by composite of ZnO particles.
参考文献/References:
[1].Nguyen N T, Chan S H. Micromachined polymer electrolyte membrane and direct methanol fuel cells-a review[J]. Journal of Micromechanics and Microengineering, 2006, 16(4): R1.
[2].Hensel J P, Gemmen R S, Thornton J D, et al. Effects of cell-to-cell fuel mal-distribution on fuel cell performance and a means to reduce mal-distribution using MEMS micro-valves[J]. Journal of Power Sources, 2007, 164(1): 115-125.
[3].Catalyst F C. Stability of commercial Pt/C low temperature fuel cell catalyst: Electrochemical IL-SEM study[J]. Acta Chimica Slovenica, 2014, 61: 280-283.
[4].Ekdunge P, R?berg M. The fuel cell vehicle analysis of energy use, emissions and cost[J]. International Journal of Hydrogen Energy, 1998, 23(5): 381-385.
[5].Wei T, Zhang N, Ji Y, et al. Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors[J]. Chinese Chemical Letters, 2022, 33(2): 714-729.
[6].Sundmacher K. Fuel cell engineering: toward the design of efficient electrochemical power plants[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10159-10182.
[7].杜瑞成, 王小玉, 李燕. 纳米四氧化三钴催化剂的制备及其电催化性能[J]. 化学通报, 2024, 87(5): 598-604.
[8].Tian J, Liu R, Wang G, et al. Dependence of metallic Ag on the photocatalytic activity and photoinduced stability of Ag/ AgCl photocatalyst[J]. Applied surface science, 2014, 319: 324-331.
[9].Menning C A, Chen J G. Theoretical prediction and experimental verification of stability of Pt-3d-Pt subsurface bimetallic structures: From Single crystal surfaces to polycrystalline films[J]. Topics in Catalysis, 2010, 53: 338-347.
[10].解丹萍, 殷博文, 张晓春, 等. 基于N-ZnO纳米材料光电化学传感器检测抗坏血酸[J]. 化学研究, 2024, 35(3): 225-230.
[11].Dědková K, Janíková B, Matějová K, et al. ZnO/graphite composites and its antibacterial activity at different conditions[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 151: 256-263.
[12].Xia C, Qiao Z, Feng C, et al. Study on zinc oxide-based electrolytes in low-temperature solid oxide fuel cells[J]. Materials, 2017, 11(1): 40.
[13].Paydar S, Akbar N, Shi Q, et al. Developing cuprospinel CuFe 2O4-ZnO semiconductor heterostructure as a proton conducting electrolyte for advanced fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9927-9937.
[14].Shah M A K Y, Mushtaq N, Rauf S, et al. The semiconductor SrFe 0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30319-30327.
[15].Lee C W, Eom S W, Sathiyanarayanan K, et al. Preliminary comparative studies of zinc and zinc oxide electrodes on corrosion reaction and reversible reaction for zinc/air fuel cells[J]. Electrochimica acta, 2006, 52(4): 1588-1591.
[16].Zhao Z, Fang F, Wu J, et al. Interfacial chemical effects of amorphous zinc oxide/graphene[J]. Materials, 2021, 14(10): 2481.
[17].Suresh S, Subash B, Karthikeyan S. Electrical, optical and photocatalytic properties of Ti-loaded ZnO/ZnO and Ti-loaded ZnO nanospheres[J]. Journal of the Iranian Chemical Society, 2017, 14: 1591-1600.
[18].Santos Y P, Valen?a E, Machado R, et al. A novel structure ZnO-Fe-ZnO thin film memristor[J]. Materials Science in Semiconductor Processing, 2018, 86: 43-48.
[19].Kim J C, Wi J H, Ri N C, et al. Thermal conductivity of graphene/ graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations[J]. Solid State Communications, 2021, 328: 114249.
相似文献/References:
[1]何 睿,许艳玲*,曾希野,等.氧化石墨烯/四氧化三铁磁性复合材料对Cr(VI)的吸附研究[J].电镀与精饰,2019,(9):1.[doi:10.3969/j.issn.1001-3849.2019.09.001]
HE Rui,XU Yanling*,ZENG Xiye,et al.Study on Adsorption Behavior of Cr(VI) by Graphene Oxide/Ferrous Oxide Magnetic Composites[J].Plating & Finishing,2019,(10):1.[doi:10.3969/j.issn.1001-3849.2019.09.001]
[2]胡素荣*,杨文茂.浸锌溶液组分含量的滴定分析方法对比[J].电镀与精饰,2019,(11):43.[doi:10.3969/j.issn.1001-3849.2019.11.009]
HU Surong*,YANG Wenmao.Comparison of Titration Analysis Methods for Component Content of Zinc Dipping Solution[J].Plating & Finishing,2019,(10):43.[doi:10.3969/j.issn.1001-3849.2019.11.009]
[3]李丽君,卜路霞*,刘树彬,等.不同表面活性剂对氧化石墨烯分散性的影响[J].电镀与精饰,2020,(6):23.[doi:10.3969/j.issn.1001-3849.2020.06.0050]
LI Lijun,BU Luxia*,LIU Shubin,et al.Effects of Different Surfactants on Dispersibility of Graphene Oxide[J].Plating & Finishing,2020,(10):23.[doi:10.3969/j.issn.1001-3849.2020.06.0050]
[4]张雪娜,冯贝贝,索文华,等.电沉积法制备Ni-GO复合镀层的工艺及力学性能研究[J].电镀与精饰,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
ZHANG Xuena,FENG Beibei,SUO Wenhua,et al.Study on the Process and Mechanical Properties of Ni-GO Composite Coating Prepared by Electrodeposition[J].Plating & Finishing,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
[5]杨 明,陈国美,倪自丰*,等.40Cr基体表面GO/BTESPT硅烷复合膜的制备和性能表征[J].电镀与精饰,2020,(9):16.
YANG Ming,CHEN Guomei,NI Zifeng*,et al.Preparation and Characterization of GO/BTESPT Silane Composite Film on 40Cr Substrate[J].Plating & Finishing,2020,(10):16.
[6]刘 凯,沈喜训 *,马 祥,等.氧化石墨烯强化银镀层的耐蚀性和耐磨性研究[J].电镀与精饰,2024,(5):11.[doi:10.3969/j.issn.1001-3849.2024.05.002]
Liu Kai,Shen Xixun *,Ma Xiang,et al.Study on corrosion resistance and wear resistance of silver coatings strengthened by graphene oxide[J].Plating & Finishing,2024,(10):11.[doi:10.3969/j.issn.1001-3849.2024.05.002]
[7]李孝坤雷鸣科 黄 帅.doi: 10.3969/j.issn.1001-3849.2025.02.001烧结钕铁硼电沉积Co-Mo-P/GO复合镀层及耐蚀性研究[J].电镀与精饰,2025,(02):1.
Li Xiaokun*,Lei Mingke,Huang Shuai.Electrodeposition of Co-Mo-P/GO composite coating on sintered NdFeB and its corrosion resistance[J].Plating & Finishing,2025,(10):1.