Huang Lichun,Zhang Yizhong.Formation mechanism and control measures of zinc slag defects in hot dip galvanizing of strip steel Liu Shishuang1, Yuan Tianxiang1*, Liu Yanqiang1, Zhang Liang2,[J].Plating & Finishing,2024,(9):83-92.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.012]
带钢热镀锌锌渣缺陷形成机理及控制措施
- Title:
- Formation mechanism and control measures of zinc slag defects in hot dip galvanizing of strip steel Liu Shishuang1, Yuan Tianxiang1*, Liu Yanqiang1, Zhang Liang2,
- Keywords:
- hot dip galvanizing; zinc slag defect; formation mechanism; influencing factors; control measures
- 分类号:
- TG335.22
- 文献标志码:
- A
- 摘要:
- 带钢连续热镀锌是目前应用最广泛且具有经济性的防腐技术。然而,热镀锌过程难免会产生锌渣,锌渣的形成不仅会造成锌资源的损失,也会严重影响带钢的表面质量,因此控制锌渣的形成是带钢热镀锌质量控制的关键点。笔者综述了近年来国内外带钢连续热镀锌锌渣缺陷的研究现状,分析了锌渣的形成机理,探讨了锌渣的影响因素,总结了锌渣的控制措施,证明通过一系列设备改进、工艺优化和规范操作等调整,可有效减少锌渣、降低锌耗、节省成本、提高质量。同时,对热镀锌技术锌渣缺陷的进一步有效预防与控制进行了展望。
- Abstract:
- Continuous hot dip galvanizing is currently the most widely used and cost-effective anti-corrosion technology. However, the hot dip galvanizing process inevitably produces zinc slag. The formation of zinc slag not only causes the loss of zinc resources, but also seriously affects the surface quality of the strip steel. Therefore, controlling the formation of zinc slag has become the key point in the quality control for hot dip galvanizing of strip steel. In this paper, the research status of zinc slag defects in continuous hot dip galvanizing of strip steel at home and abroad in recent years is reviewed. The formation mechanism of zinc slag is analyzed, the influencing factors of zinc slag are explored, and the control measures of zinc slag are summarized. It is proved that through a series of equipment improvements, process optimization, and standardized operation adjustments, the zinc slag can be effectively reduced, zinc consumption can be reduced, costs can be saved, and quality can be improved. At the same time, the further effective prevention and control of the zinc slag defects in hot dip galvanizing technology are prospected
参考文献/References:
[1].赵川翔, 冯辉雄, 吴科, 等. 合金化热镀锌钢板表面锌渣缺陷研究[J]. 宝钢技术, 2022, (6): 26-31.
[2].Luo Q, Jin F, Li Q, et al. The mechanism of dross formation during hot-dip Al-Zn alloy coating process[J]. Journal for Manufacturing Science and Production, 2013, 13(1-2): 85-89.
[3].李林, 高毅. 镀锌板表面锌渣缺陷的控制[J]. 上海金属, 2007, 29(5): 87-90.
[4].曾智宇. 钢丝热镀锌锌渣的控制[J]. 湖南冶金, 2007, 31(6): 37-39.
[5].金永清, 郭太雄. 连续热镀锌镀液铝含量的控制[J]. 轧钢, 2011, 28(5): 24-26.
[6].陆勇, 侯晓光, 钱洪卫. 附加外场力对锌锅表层锌液流动和锌渣分布的影响[J]. 宝钢技术, 2020, (1): 13-20.
[7].兰言彬, 王平, 唐成龙, 等. 热镀锌工艺中带钢入锌锅温度的优化研究[J]. 热加工工艺, 2023, 52(2): 72-74.
[8].吕军义. 热镀锌锅中感应加热器功率和位置对锌渣分布的影响[J]. 宝钢技术, 2018, (1): 54-58.
[9].侯晓光, 钱洪卫, 陆勇. 热镀锌锌锅电磁驱渣模拟研究及生产实践[J]. 轧钢, 2022, 39(4): 87-96.
[10].Fei H Z, Li J, Li H Y. Size effect on flow field and dynamic deposition of bottom dross in a molten zinc pot [J]. ISIJ International, 2021, 61(5): 1633-1640.
[11].Vourlias G, Pistofidis N, Stergioudis G, et al. A negative effect of the insoluble particles of dross on the quality of the galvanized coatings[J]. Solid State Sciences, 2005, 7(4): 465-474.
[12].张文军, 刘格非, 王孝建, 等. 热镀铝锌带钢表面缺陷形成机理及工艺优化[J]. 钢铁, 2023, 58(4): 87-95.
[13].王银军, 李远鹏, 江社明, 等. 热浸镀铝锌熔池锌渣形成的研究进展[J]. 材料保护, 2020, 53(10): 85-92.
[14].王保勇, 鲍成人, 宁媛媛, 等. 热镀锌带钢表面锌渣缺陷形成分析及改进措施[J]. 冶金与材料, 2019, 39(1): 14-16.
[15].周国平, 于磊, 谷田, 等. 带钢表面锌渣产生的机理及控制措施[J]. 冶金管理, 2020, (15): 6-7.
[16].宋进英, 张宏军, 赵定国, 等. 焊接钢管热浸镀锌表面凸起缺陷成因分析及改进措施[J]. 铸造技术, 2016, 37(4): 692-694.
[17].陈刚, 但斌斌, 严开勇, 等. 热镀锌板隐形锌渣缺陷的典型特征及控制措施[J]. 机械工程材料, 2019, 43(1): 31-35.
[18].Kim H S, Kim J G, Yoon S C, et al. Numerical simulation of flow and dross particle transfer in a 55% Al-Zn pot[J]. Corrosion Science and Technology, 2012, 11(3): 71-76.
[19].Kancharla H, Mandal G K, Singh S S, et al. Effect of strip entry temperature on the interfacial layer and corrosion behavior of galvanized steel[J]. Surface and Coatings Technology, 2022, 433: 128071.
[20].胡华东. 热镀锌板锌渣缺陷形成机理分析及预防措施[J]. 山东冶金, 2018, 40(5): 24-26, 29.
[21].卜二军, 薛向欣, 杨合. 邯钢冷轧厂热镀锌渣形成原因分析及控制措施[J]. 中国冶金, 2016, 26(4): 47-50.
[22].Luo Q, Jin F, Li Q, et al. The mechanism of dross formation during hot-dip Al-Zn alloy coating process[J]. Journal for Manufacturing Science and Production, 2013, 13(1-2): 85-89.
[23].许秀飞. 钢带连续热镀锌技术问答[M]. 北京:化学工业出版社, 2007.
[24].李龙. 热镀锌沉没辊印的成因分析及控制[J]. 金属材料与冶金工程, 2022, (5): 29-35.
[25].张军, 杨建国, 钱洪卫, 等. 连续热镀锌机组锌液温度的精确控制[J]. 宝钢技术, 2016, (1): 59-63.
[26].金永清, 李响, 蒋英箴, 等. 热镀锌锌液有效铝控制技术研究[J]. 电镀与精饰, 2023, 45(6): 73-76.
[27].许秀飞. 钢带热浸镀工艺参数的动态精准控制方法[J]. 中国冶金, 2018, 28(4): 61-65.
[28].Mandl G K, Balasubramaniam R, Mehrotra S P. Theoretical investigation of the interfacial reactions during hot-dip galvanizing of steel[J]. Metallurgical & Materials Transactions A, 2009, 40 A(3): 637-645.
[29].吴价宝, 张雨泉. 控制热镀锌汽车外板锌渣缺陷的工艺创新方法[C]//第十二届中国钢铁年会论文集. 北京:中国金属学会, 2019, 123-128.
[30].张霞, 卢秉仲, 张冰, 等. 连续热镀锌汽车面板锌渣缺陷产生原因及改善[J]. 金属世界, 2017, (6): 40-43.
[31].徐勇. 镀铝锌机组的退火炉设计优化[J]. 工业炉, 2013, 35(4): 34-36.
[32].吴新忠, 苗立贤. 降低钢材热镀锌过程锌耗的方法研究[J]. 天津冶金, 2022, (5): 36-40.
[33].任新意, 高慧敏, 郑艳坤, 等. 热镀锌双相钢表面亮点缺陷的生成机理及控制[J]. 电镀与涂饰, 2017, 36(1): 36-41.
[34].杨宏伟, 刘春雨, 周研, 等. 热浸镀锌板表面锌渣缺陷成因及控制技术研究[J]. 天津冶金, 2022, (4): 33-36.
[35].岳崇锋, 江社明, 王银军, 等. 热镀铝锌硅镀层凸点缺陷组织分析及生产工艺优化[J]. 腐蚀与防护, 2015, 36(3): 306-309.
[36].李刚, 闫秉昊. 热镀铝锌厚板锌渣缺陷原因分析[J]. 宝钢技术, 2023, (2): 50-53.
[37].冯冠文, 胡吟萍, 杨芃, 等. 热镀锌钢带沉没辊辊印缺陷成因分析及控制方法[J]. 钢铁研究, 2010, 38(4): 57-59.
[38].郭军贤. 热镀锌产品表面渣斑的形成机理与改进技术[J]. 金属材料与冶金工程, 2016, 44(3): 52-56.
[39].何立军. 连续热镀锌锌液成分在线检测仪及应用实践[J]. 轧钢, 2023, 40(2): 150-153.
相似文献/References:
[1]李永迪,宫明江,于茂来,等.环保高效热镀锌合金钢丝技术研究[J].电镀与精饰,2021,(12):52.[doi:10.3969/j.issn.1001-3849.2021.12.011]
LI Yongdi,GONG Mingjiang,YU Maolai,et al.Environmental Protection and High-Efficiency Hot-Dip Zinc Alloy Steel Wire Technology Research[J].Plating & Finishing,2021,(9):52.[doi:10.3969/j.issn.1001-3849.2021.12.011]
[2]孙国庆,马永涛,冉成进,等.热镀锌中锌浮渣浸出毒性分析及探讨[J].电镀与精饰,2022,(6):37.[doi:10.3969/j.issn.1001-3849.2022.06.008]
SUN Guoqing,MA Yongtao,RAN Chengjin,et al.Analysis and Discussion on Leaching Toxicity of Zinc Scum from Hot Dip Galvanizing[J].Plating & Finishing,2022,(9):37.[doi:10.3969/j.issn.1001-3849.2022.06.008]
[3]姚金刚,徐 曦*,张会杰,等. GIS气动机构储气罐内壁防腐质量提升 [J].电镀与精饰,2022,(9):44.[doi:10.3969/j.issn.1001-3849.2022.09.008]
YAO Jingang,XU Xi*,ZHANG Huijie,et al.Improvement of Anti-Corrosion Quality of Inner Wall of Gas Storage Tank of GIS Pneumatic Mechanism[J].Plating & Finishing,2022,(9):44.[doi:10.3969/j.issn.1001-3849.2022.09.008]
[4]金永清*,李 响,蒋英箴,等.热镀锌锌液有效铝控制技术研究[J].电镀与精饰,2023,(6):73.[doi:10.3969/j.issn.1001-3849.2023.06.012]
Jin Yongqing*,Li Xiang,Jiang Yingzhen,et al.Study on effective Al control technology of hot-dip galvanizing bath[J].Plating & Finishing,2023,(9):73.[doi:10.3969/j.issn.1001-3849.2023.06.012]
[5]邓凌峰,黄 超,韩 靓 *,等. 浅谈船舶热镀锌表面处理的质量控制 [J].电镀与精饰,2023,(10):68.[doi:10.3969/j.issn.1001-3849.2023.10.011]
Deng Lingfeng,Huang Chao,Han Liang *,et al.Quality control of hot-dip galvanized surface treatment of ships[J].Plating & Finishing,2023,(9):68.[doi:10.3969/j.issn.1001-3849.2023.10.011]
[6]金永清*,尹红国,寸海红,等.热镀锌镀层白条缺陷研究及控制[J].电镀与精饰,2024,(4):106.[doi:10.3969/j.issn.1001-3849.2024.04.015]
Jin Yongqing*,Yin Hongguo,Cun Haihong,et al.Study and control of white bar defects in hot-dip galvanized coating[J].Plating & Finishing,2024,(9):106.[doi:10.3969/j.issn.1001-3849.2024.04.015]