Tan Xin*,Li Xinyi,Wu Yinglin,et al.Simple and large size method for preparing superhydrophobic silicone rubber coating[J].Plating & Finishing,2023,(10):90-96.[doi:10.3969/j.issn.1001-3849.2023.10.015]
简单且大尺寸超疏水硅橡胶涂层的制备
- Title:
- Simple and large size method for preparing superhydrophobic silicone rubber coating
- Keywords:
- super-hydrophobic ; silicone rubber ; silane coupling agent ; large size preparation
- 分类号:
- TQ178
- 文献标志码:
- A
- 摘要:
- 采用疏水气相纳米二氧化硅构建粗糙结构,双组分室温硫化硅橡胶( RTV - 2 )作为黏合剂增加涂层的机械性能,制备的涂层水接触角达到 155.5 ° ,滚动角达到 8 ° 。加入硅烷偶联剂( KH-570 )对涂层疏水改性后,涂层水接触角达到 160.5 ° ,滚动角达到 4 ° 。采用自清洁实验、机械性能实验、耐气候老化实验对涂层性能进行了测试,结果表明涂层具有良好的自清洁、机械性能高、耐气候老化等优点。涂层实验步骤简单、药品经济型高、不需要高温固化。室温下 2 h 可以完成涂层制备的全过程,适用于大尺寸制备。实验方案为超疏水涂层商用化提供了一定的思路。
- Abstract:
- : The rough structure of the coating was constructed by hydrophobic vapor nano-silica , and the mechanical properties of the coatings were increased by using two-component silicone rubber ( RTV-2 ) as adhesive. The hydrophobic angle of the prepared coating reached 155.5 ° and the rolling angle reached 8 °. After adding silane coupling agent ( KH-570 ) to the hydrophobic modification of the coating , the hydrophobic angle of the coating reached 160.5 ° and the rolling angle reached 4 °. The coating properties were tested by self-cleaning experiment , mechanical property experiment and weather-aging resistance experiment. The results showed that the coating had the advantages of good self-cleaning , high mechanical property and weather-aging resistance. The coating experiment was simple , economical and did not require high temperature curing. The whole process of coating preparation can be completed in 2 h at room temperature , which was suitable for large size preparation. The experimental scheme can provide some references for the commercialization of superhydrophobic coatings.
参考文献/References:
[1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[2] Darvizeh M, Darvizeh A, Rajabi H, et al. Free vibra tion analysis of dragonfly wings using finite element method[J]. The International Journal of Multiphysics, 2009, 3(1): 101-110.
[3] Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217.
[4] Manatunga D C, de Silva R M, de Silva K M N. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials[J]. Applied Surface Science, 2016, 360: 778-788.
[5] Gao S, Sun J, Liu P, et al. A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property[J]. Advanced Materials, 2016, 28(26): 5307-5314.
[6] Wang P, Yao T, Li Z, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite[J]. Composites Science and Technology, 2020, 198: 108307.
[7] Tie L, Li J, Liu J, Guo Z, et al. Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity[J]. Journal of Materials Chemistry A, 2018, 6(25): 11682-11687.
[8] Shi X, Zhao L, Wang J, et al. Toward easily enlarged superhydrophobic copper surfaces with enhanced corrosion resistance, excellent self-cleaning and anti-icing performance by a facile method[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6317-6325.
[9] Okoshi M, Pambudi W S. Fabrication of superhydrophobic silicone rubber by ArF-excimer-laser-induced microstructuring for repelling water in water[J]. Applied Physics Express, 2016, 9(11): 112701.
[10] Ju J, Yao X, Hou X, et al. A highly stretchable and robust non-fluorinated superhydrophobic surface[J]. Journal of Materials Chemistry A, 2017, 5(31): 16273-16280.
[11] Peng W, Gou X, Qin H, et al. Creation of a multifunctional superhydrophobic coating for composite insulators[J]. Chemical Engineering Journal, 2018, 352: 774-781.
[12] Zylka P. Biomimetic surface-conducting silicone rubber obtained by physical deposition of MWCNT[J]. Smart Materials and Structures, 2015, 24(6): 065040.
[13] Tian H, Wang F, Ge S, et al. A simple and effective way to fabricate mechanical robust superhydrophobic surfaces[J]. RSC Advances, 2016, 6(34): 28563-28569.
[14] Sun J, Shi X, Du Y, et al. A robust, flexible superhydrophobic sheet fabricated by in situ growth of micro-nano-SiO 2 particles from cured silicone rubber[J]. Journal of Sol-Gel Science and Technology, 2019, 91(1): 208-215.
[15] Chen L, Wang X, Yang T, et al. Superhydrophobic micro-nano structures on silicone rubber by nanosecond laser processing[J]. Journal of Physics D: Applied Physics, 2018, 51(44): 445301.
[16] Roach P, Shirtcliffe N J, Newton M I. Progress in superhydrophobic surface development[J]. Soft Matte, 2008, 4(2): 224-240.
[17] He Q, Wang G, Zhang Y, et al. Thermo-oxidative ageing behavior of cerium oxide/silicone rubber[J]. Journal of Rare Earths, 2020, 38(4): 436-444.
[18] Han R, Wang Z, Zhang Y, et al. Thermal stability of CeO 2 /graphene/phenyl silicone rubber composites[J]. Polymer Testing, 2019, 75: 277-283.
[19] 曹小华 , 钟婵娟 , 穆晶 . H 6 P 2 W 18 O 62 /KH570-SiO 2 催化剂的制备、表征及催化合成乙酸正丁酯 [J]. 功能材料 , 2020, 51(8): 8117-8122.
相似文献/References:
[1]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(10):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[2]陈宇威,魏长伟,罗洪秦,等. 基于方波交流极化制备彩色超疏水不锈钢表面的研究 [J].电镀与精饰,2022,(9):25.[doi:10.3969/j.issn.1001-3849.2022.09.005]
CHEN Yuwei,WEI Changwei,LUO Hongqin,et al.Preparation of Colored Superhydrophobic Stainless Steel Surface Based on Square-Wave AC Polarization[J].Plating & Finishing,2022,(10):25.[doi:10.3969/j.issn.1001-3849.2022.09.005]
[3]张 婷*,宋健民.聚谷氨酸修饰BN对BN@聚谷氨酸/硅橡胶复合材料性能的影响研究[J].电镀与精饰,2023,(3):45.[doi:10.3969/j.issn.1001-3849.2023.03.007]
Zhang Ting*,Song Jianmin.Effect of polyglutamic acid modified BN on properties of BN@polyglutamic acid/silicone rubber composites[J].Plating & Finishing,2023,(10):45.[doi:10.3969/j.issn.1001-3849.2023.03.007]
[4]刘井坤,欧阳义波,段体岗,等.复合流体涂层用于Cu金属的防腐蚀研究[J].电镀与精饰,2023,(11):46.[doi:10.3969/j.issn.1001-3849.2023.11.007]
Liu Jingkun,Ouyang Yibo,et al.Compositing fluid infused surface on Cu for corrosion inhibition[J].Plating & Finishing,2023,(10):46.[doi:10.3969/j.issn.1001-3849.2023.11.007]
[5]余金桂*,阮赣江,章桥新.基于碳纳米管涂装的超疏水表面及性能研究[J].电镀与精饰,2024,(6):78.[doi:10.3969/j.issn.1001-3849.2024.06.011]
Yu Jingui*,Ruan Ganjiang,Zhang Qiaoxin.Study on superhydrophobic surface and properties based on carbon nanotube coating[J].Plating & Finishing,2024,(10):78.[doi:10.3969/j.issn.1001-3849.2024.06.011]
备注/Memo
收稿日期: 2022-12-06 修回日期: 2023-03-01 * 通信作者: 谭鑫( 1995 —),男,硕士研究生, email : 2252341327@qq.com