YANG Ming,CHEN Guomei,NI Zifeng*,et al.Preparation and Characterization of GO/BTESPT Silane Composite Film on 40Cr Substrate[J].Plating & Finishing,2020,(9):16-23.
40Cr基体表面GO/BTESPT硅烷复合膜的制备和性能表征
- Title:
- Preparation and Characterization of GO/BTESPT Silane Composite Film on 40Cr Substrate
- 文献标志码:
- A
- 摘要:
- 为了防止40Cr金属基体的腐蚀,在其表面制备添加氧化石墨烯(GO)改性的双-[γ-(三乙氧基硅)丙基]-四硫化物(BTESPT)硅烷复合膜。采用扫描电子显微镜、X射线光电子能谱仪和接触角测量仪分析GO/BTESPT硅烷复合膜在40Cr基体表面的成膜性和疏水性,采用硫酸铜滴定试验和Tafel曲线测试研究其耐蚀性能。结果表明:GO/BTESPT硅烷复合膜在40Cr基体表面成膜性较好,接触角增加至87.41°,表面疏水性增加;与未处理的40Cr基体相比,GO/BTESPT硅烷复合膜试样耐硫酸铜腐蚀时间可达8.41 min,腐蚀电流密度下降了近2个数量级,腐蚀电位正移,表现出良好的耐蚀性能,GO/BTESPT硅烷复合膜在3.5 wt%的NaCl溶液中浸泡3 d后,仍具有一定的耐蚀防护性能。
- Abstract:
- In order to prevent the corrosion of 40Cr metal substrate, 40Cr steel surface was used to prepare the double-[γ-(triethylsilicon) propyl]-four sulfide (BTESPT) silane composite film with graphene oxide(GO). Hydrophobicity and film forming property of silane composite film on 40Cr substrate surface was studied by scanning electron microscope, X-ray photoelectron spectrometer and contact angle meter. Corrosion resistance of GO/BTESPT silane composite film was studied by the cupric sulfate titration test and Tafel curve test. The results show that the film-forming property of GO/BTESPT silane composite film on 40Cr metal substrate is good. The contact angle increases to 87.41° and the surface hydrophobicity increases. Compared with the untreated 40Cr metal substrate, GO/BTESPT silane composite film can endure copper sulfate corrosion for 8.41 min. The corrosion current density of the GO/BTESPT silane composite film has decreased by nearly two orders of magnitude and the corrosion potential shifts positively, indicating that the GO/BTESPT silane composite film exhibits excellent corrosion resistance. After immersed in 3.5 wt% NaCl solution for 3 days, the GO/BTESPT silane composite film still has certain corrosion protection performance.
参考文献/References:
[1] 巩校良, 金玉楠, 李昊, 等. 氧化参数对2196铝锂合金阳极氧化膜厚度和耐蚀性的影响[J]. 沈阳航空航天大学学报, 2018, 35(4): 67-76.
Gong X L, Jin Y N, Li H, et al. Effects of oxidation parameters on the thickness and corrosion resistance of anodizing film on 2196 aluminum lithium alloy[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2018, 35(4): 67-76 (in Chinese).
[2] 郭晓斐, 王玥, 孙华, 等. 镀锌层三价铬钝化膜的制备工艺及性能研究[J]. 材料保护, 2012, 45(2): 35-37.
Guo X F, Wang Y, Sun H, et al. Study on preparation technology and properties of trivalent chromium passivation film for zinc coating[J]. Journal of Materials Protection, 2012, 45(2): 35-37 (in Chinese).
[3] 马建权, 田冰, 程兴德. 镀锌钢板有机无铬钝化技术研究的进展[J]. 轧钢, 2007, 24(1): 36-38.
Ma J Q, Tian B, Chen X D. Development of chromate free organic passivation for galvanizing sheet steel[J]. Steel Rolling, 2007, 24(1): 36-38 (in Chinese).
[4] 康佳, 刘胜林, 耿刚强, 等. 镀锌板无铬钝化技术研究进展[J]. 应用化工, 2017(5): 963-966.
Kang J, Liu S L, Geng G Q, et al. Research progress of chromate free passivation technology for zinc coating[J]. Applied Chemical Industry, 2017(5): 963-966 (in Chinese).
[5] 姚知深, 牛宗伟, 刘斌. 超声振动对65钢电解磷化膜表面形貌与耐蚀性的影响[J]. 电镀与精饰, 2019(9): 24-28.
Yao Z S, Niu Z W, Liu B. Effect of ultrasonic vibration on surface morphology and corrosion resistance of 65 steel electrolytic phosphating film[J]. Plating & Finishing, 2019(9): 24-28 (in Chinese).
[6] 胡文娇, 周勇, 李依旋, 等. Ni2+对铝合金磷化膜结构和耐蚀性的影响[J]. 电镀与精饰, 2012, 34(1): 1-4.
Hu W J, Zhou Y , Li Y X, et al. Effect of Ni2+ on structure and corrosion resistance of phosphate conversion coating on aluminum alloy[J]. Plating & Finishing, 2012, 34(1): 1-4 (in Chinese).
[7] 谢明, 李丽波, 李悠, 等. 常温锌锰系磷化工艺及磷化膜性能研究[J]. 电镀与环保, 2018, 8(6): 68-70.
Xie M, Li L B, Li Y, et al. Room temperature zinc-manganess phosphating technology and properties of phosphating film[J]. Electroplating & Pollution Control, 2018, 8(6): 68-70 (in Chinese).
[8] 李天一, 朱晓斐. 低碳钢表面复合硅烷膜的制备与防腐蚀性能[J]. 腐蚀与防护, 2016, 37(9): 711-714.
Li T Y, Zhu X F. Preparation and anti-corrosion behaviour of hybrid silane coating on surface of mild steel[J]. Corrosion and Protection, 2016, 37(9): 711-714 (in Chinese).
[9] Brusciotti F, Batan A, Graeve I D, et al. Characterization of thin water-based silane pre-treatments on aluminium with the incorporation of nano-dispersed CeO2 particles[J]. Surface & Coatings Technology, 2010, 205(2): 603-613.
[10] 冀晓丽, 张欣, 刘晓慧, 等. 金属表面有机硅复合膜的耐腐蚀性能[J]. 大连工业大学学报, 2014, 33(3): 193-196.
Ji X L, Zhang X, Liu X H, et al. Corrosion resistance of silane composite membrane on steel surface[J]. Journal of Dalian Institute of Light Industry, 2014, 33(3): 193-196 (in Chinese).
[11] 楚景慧, 佟立波, 江忠浩. 氧化石墨烯/硅烷自组装涂层对镁合金耐腐蚀和耐磨损性能的影响[J]. 表面技术, 2019(3): 62-68.
Chu J H, Tong L B, Jang Z H. Effect of graphene oxide/silane self-assemble coating on corrosion and wear resistance of Mg alloy[J]. Surface Technology, 2019(3): 62-68 (in Chinese).
[12] Pourhashem S, Rashidi A, Vaezi M R, et al. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide[J]. Surface and Coatings Technology, 2017, 317:1-9.
[13] Parhizkar N, Shahrabi T, Ramezanzadeh B. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film[J]. Corrosion science, 2017, 123: 55-75.
[14] 刘莉莉, 董锐. 氧化石墨烯改性丙烯酸树脂涂层的制备及性能研究[J]. 化工新型材料, 2016(8):183-185.
Liu L L, Dong R. Preparation and property of acrylic resin coating modified by grapheme oxide[J]. New Chemical Materials, 2016(8):183-185 (in Chinese).
相似文献/References:
[1]何 睿,许艳玲*,曾希野,等.氧化石墨烯/四氧化三铁磁性复合材料对Cr(VI)的吸附研究[J].电镀与精饰,2019,(9):1.[doi:10.3969/j.issn.1001-3849.2019.09.001]
HE Rui,XU Yanling*,ZENG Xiye,et al.Study on Adsorption Behavior of Cr(VI) by Graphene Oxide/Ferrous Oxide Magnetic Composites[J].Plating & Finishing,2019,(9):1.[doi:10.3969/j.issn.1001-3849.2019.09.001]
[2]李丽君,卜路霞*,刘树彬,等.不同表面活性剂对氧化石墨烯分散性的影响[J].电镀与精饰,2020,(6):23.[doi:10.3969/j.issn.1001-3849.2020.06.0050]
LI Lijun,BU Luxia*,LIU Shubin,et al.Effects of Different Surfactants on Dispersibility of Graphene Oxide[J].Plating & Finishing,2020,(9):23.[doi:10.3969/j.issn.1001-3849.2020.06.0050]
[3]张雪娜,冯贝贝,索文华,等.电沉积法制备Ni-GO复合镀层的工艺及力学性能研究[J].电镀与精饰,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
ZHANG Xuena,FENG Beibei,SUO Wenhua,et al.Study on the Process and Mechanical Properties of Ni-GO Composite Coating Prepared by Electrodeposition[J].Plating & Finishing,2020,(9):1.[doi:10.3969/j.issn.1001-3849.2020.08.0010]
[4]刘 凯,沈喜训 *,马 祥,等.氧化石墨烯强化银镀层的耐蚀性和耐磨性研究[J].电镀与精饰,2024,(5):11.[doi:10.3969/j.issn.1001-3849.2024.05.002]
Liu Kai,Shen Xixun *,Ma Xiang,et al.Study on corrosion resistance and wear resistance of silver coatings strengthened by graphene oxide[J].Plating & Finishing,2024,(9):11.[doi:10.3969/j.issn.1001-3849.2024.05.002]
[5]侯攀超,杨 玥,周景淼,等.ZnO/GO复合薄膜电极的制备及其耐腐蚀性能[J].电镀与精饰,2024,(10):50.
Hou Panchao,Yang Yue,Zhou Jingmiao,et al.Preparation and corrosion resistance of ZnO/GO composite thin film electrodes[J].Plating & Finishing,2024,(9):50.
[6]李孝坤雷鸣科 黄 帅.doi: 10.3969/j.issn.1001-3849.2025.02.001烧结钕铁硼电沉积Co-Mo-P/GO复合镀层及耐蚀性研究[J].电镀与精饰,2025,(02):1.
Li Xiaokun*,Lei Mingke,Huang Shuai.Electrodeposition of Co-Mo-P/GO composite coating on sintered NdFeB and its corrosion resistance[J].Plating & Finishing,2025,(9):1.