YUAN Ying *.Preparation of Superhydrophobic Composite Film on Magnesium Alloy and Its Corrosion Resistance and Self-Cleaning Performance[J].Plating & Finishing,2022,(8):38-43.[doi:10.3969/j.issn.1001-3849.2022.08.007]
镁合金表面超疏水复合膜层制备及其耐腐蚀、自清洁性能研究
- Title:
- Preparation of Superhydrophobic Composite Film on Magnesium Alloy and Its Corrosion Resistance and Self-Cleaning Performance
- Keywords:
- superhydrophobic composite film ; magnesium alloy ; wettability performance ; self-cleaning performance ; corrosion resistance
- 分类号:
- TG174.4
- 文献标志码:
- A
- 摘要:
- 采用锌系磷化工艺结合溶胶—凝胶法,先在镁合金基体表面制备一层锌系磷化膜,然后通过涂覆改性 SiO 2 溶胶固化后获得出超疏水复合膜层。采用扫描电镜、能谱仪、接触角测量仪、电化学工作站并通过对比实验,对复合镀层的表面形貌、成分、润湿性能、自清洁性能和耐腐蚀性能进行测试分析。结果表明:复合镀层表面表面形成微纳米结构呈现超疏水状态,静态接触角达到 151.67° ,主要成分为 Zn 、 P 、 O 、 Si 和 C 元素。复合膜层具有良好的自清洁性能及抗酸碱腐蚀能力,其电荷转移电阻和膜层电阻相比于镁合金基体分别提高约 4.6 倍和 3.2 倍,对镁合金基体的保护效率为 82.1% ,能有效抑制镁合金基体腐蚀同时保护其免受污染。
- Abstract:
- : A zinc phosphating film was prepared on magnesium alloy substrate , and then a super-hydrophobic composite film was obtained through coating modified SiO 2 sol after curing using zinc phosphating process combined with sol-gel method. The surface morphology , components , wettability performance , self-cleaning performance and corrosion resistance of the composite coating were tested and analyzed by scanning electron microscope , energy dispersive spectrometer , contact angle measuring instrument , electrochemical workstation and through comparative experiments. The results show that the composite coating is in superhydrophobic state with micro-nano structure , the static contact angle reaches 151.67° , and the main components are Zn , P , O , Si and C elements. The composite film has good self-cleaning performance and acid and alkali corrosion resistance , its charge transfer resistance and film resistance are increased by about 4.6 times and 3.2 times respectively compared with magnesium alloy substrate , and the protection efficiency for magnesium alloy substrate is 82.1%. The composite film can effectively inhibit the corrosion of magnesium alloy substrate and protect it from pollution.
参考文献/References:
[1] 刘广超 . 镁合金改善耐腐蚀性的探讨 [J]. 中国金属通报 , 2021(10): 109-110.
[2] 袁静 , 袁瑞 , 毛多鹭 , 等 . 镀液 pH 值对镁合金 Ni-P 化学镀层的影响 [J]. 材料保护 , 2020, 53(1): 140-145.
[3] Dou J H, Wang J, Li H C, et al. Enhanced corrosion resistance of magnesium alloy by plasma electrolytic oxidation plus hydrothermal treatment[J]. Surface and Coatings Technology, 2021(424): 127662.
[4] Xiong Y, Zhu T, Yang J, et al. Effect of twin-induced texture evolution on corrosion resistance of extruded ZK60 magnesium alloy in simulated body fluid[J]. Journal of Materials Engineering and Performance, 2020(29): 5710-5717.
[5] 张子吟 , 张华 , 邵凯凯 . 汽车用镁合金磷化处理及化学镀 Ni-Sn-P 合金镀层 [J]. 电镀与环保 , 2020, 40(2): 10-12.
[6] 袁英 . 硝酸镨对镁合金锌系磷化膜耐蚀性的影响 [J]. 兵器材料科学与工程 , 2021, 44(6): 35-40.
[7] Zhang F, Zhang C L, Song L, et al. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum[J]. Acta Metallurgica Sinica , 2015(28): 1373-1381.
[8] Ding C D, Tai Y, Wang D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection[J]. Chemical Engineering Journal, 2019(357): 518-532.
[9] Wu Y H, Zhao W J, Wang W R, et al. Fabricating binary anti-corrosion structures containing superhydrophobic surfaces and sturdy barrier layers for Al alloys[J]. RSC Advances, 2016, 6(6): 5100-5110.
[10] Tombesi A, Li S, Sathasivam S, et al. Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes[J]. Scientific Reports, 2019(9): 7549.
[11] 张雪芬 . 基于 sol-gel 电化学技术的超疏水表面及其在金属防护中的应用 [D]. 杭州 : 浙江大学 , 2017.
[12] 王永红 , 杨倩倩 , 刘辰 , 等 . 非金属超疏水纳米涂层技术的研究进展 [J]. 材料导报 , 2020, 34(z1): 66-71.
[13] Zhang Q Q, Zhang H C. Corrosion resistance and mechanism of micro-nano structure super-hydrophobic surface prepared by laser etching combined with coating process[J]. Anti-Corrosion Methods and Materials, 2019, 66(3): 264-273.
[14] Chobaomsup V, Metzner M, Boonyongmaneerat Y. Superhydrophobic surface modification for corrosion protection of metals and alloys[J]. Journal of Coatings Technology and Research, 2020(17): 583-595.
[15] 安成强 , 李庆鲁 , 郝建军 . 纳米二氧化钛硅烷接枝密度对水性环氧涂层耐蚀性能的影响 [J]. 表面技术 , 2020, 49(3): 248-254.
[16] 陈浩 , 陈康华 , 徐银超 , 等 . AlTiN, AlTiN-Cu 和 AlTiN/AlTiN-Cu 涂层的组织结构与耐腐蚀性能 [J]. 中南大学学报 ( 自然科学版 ), 2018, 49(2): 316-322.
[17] Jiang G R, Zhou J, Shang T, et al. Corrosion resistance of Zn-Al-Mg alloys with hypoeutectic microstructure[J]. Solid State Phenomena, 2019(298): 52-58.
[18] Daroonparvar M, Yajid M A M, Bakhsheshi-Rad H R, et al. Fabrication and corrosion resistance evaluation of novel epoxy/oxide layer (MgO) coating on Mg alloy[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020(56): 1039-1050.
[19] Cui W F, Dong Y Y, Bao Y C, et al. Improved corrosion resistance of dental Ti 50 Zr alloy with (TiZr)N coating in fluoridated acidic artificial saliva[J]. Rare Metals volume, 2021(40): 2927-2936.
[20] Xiang T F, Zheng S L, Zhang M, et al. Bioinspired slippery zinc phosphate coating for sustainable corrosion protection[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10960-10968.
相似文献/References:
[1]徐美玲,亢淑梅,陈婷婷,等.添加氯化铈对镁合金Ni?P化学镀镀层性能影响[J].电镀与精饰,2019,(1):37.[doi:10.3969/j.issn.1001-3849.2019.01.008]
XU Meiling,KANG Shumei,CHEN Tingting,et al.Properties of Electroless Plating Ni?P on Magnesium AlloySubstrate by Adding CeCl3[J].Plating & Finishing,2019,(8):37.[doi:10.3969/j.issn.1001-3849.2019.01.008]
[2]牟世辉,尹鸿鹍,代肇一.镀铜优化对AZ91D镁合金疏水膜性能的影响[J].电镀与精饰,2019,(6):29.[doi:10.3969/j.issn.1001-3849.2019.06.006]
MU Shihui,YIN Hongkun,DAI Zhaoyi.Effect of Copper Plating Optimization on the Performance of AZ91D Magnesium Alloy Hydrophobic Membrane[J].Plating & Finishing,2019,(8):29.[doi:10.3969/j.issn.1001-3849.2019.06.006]
[3]刘 玮,安成强*,郝建军,等.钼酸钠对AZ91D镁合金钒/锆复合转化膜性能的影响[J].电镀与精饰,2019,(8):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
LIU Wei,AN Chengqiang*,HAO Jianjun,et al.Effect of Na2MoO4 on Properties of Vanadium/Zirconate Conversion Coating on AZ91D Magnesium Alloy[J].Plating & Finishing,2019,(8):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
[4]李佳霖,郝建军,牟世辉.Fe2+对镁合金电化学磷化改性研究[J].电镀与精饰,2019,(10):1.[doi:10.3969/j.issn.1001-3849.2019.10.001]
LI Jialin,HAO Jianjun,MOU Shihui.Study on Electrochemical Phosphating Modification of Magnesium Alloy by Fe2+[J].Plating & Finishing,2019,(8):1.[doi:10.3969/j.issn.1001-3849.2019.10.001]
[5]贾启华,许晓娟*.沉积时间对镁合金化学镀镍的影响[J].电镀与精饰,2019,(12):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
JIA Qihua,XU Xiaojuan*.Effect of Deposition Time on Direct Electroless Plating of Magnesium Alloys[J].Plating & Finishing,2019,(8):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
[6]王 丽,顾 威,郭 荣,等.环保型无机缓蚀剂对AZ91D镁合金的缓蚀效果[J].电镀与精饰,2020,(4):18.[doi:10.3969/j.issn.1001-3849.2020.04.0040]
WANG Li,GU Wei,GUO Rong,et al.Inhibition Effect of Environmental Protection Inorganic Corrosion Inhibitor on AZ91D Magnesium Alloy[J].Plating & Finishing,2020,(8):18.[doi:10.3969/j.issn.1001-3849.2020.04.0040]
[7]党在清*.镁合金复合镀层的制备及其结构与性能表征[J].电镀与精饰,2020,(11):16.[doi:10.3969/j.issn.1001-3849.2020.11.0040]
DANG Zaiqing*.Study on the Structure and Properties of Composite Coating on Magnesium Alloy[J].Plating & Finishing,2020,(8):16.[doi:10.3969/j.issn.1001-3849.2020.11.0040]
[8]王晓奇*,曹 慧,雷 彪.镁合金表面电弧离子镀TiAlN薄膜的结构与性能研究[J].电镀与精饰,2021,(6):25.[doi:10.3969/j.issn.1001-3849.2021.06.006]
WANG Xiaoqi*,CAO Hui,LEI Biao.Structure and Properties of TiAlN Films by Arc Ion Plating on Mg Alloys[J].Plating & Finishing,2021,(8):25.[doi:10.3969/j.issn.1001-3849.2021.06.006]
[9]宋政伟*,丁莉峰,王沛霖,等.镁合金表面Ni-P/Cu-Zn超疏水复合涂层制备及耐蚀性研究[J].电镀与精饰,2021,(7):10.[doi:10.3969/j.issn.1001-3849.2021.07.002]
SONG Zhengwei*,DING Lifeng,WANG Peilin,et al.Preparation and Corrosion Resistance of Ni-P/Cu-Zn Super-Hydrophobic Composite Coating on the Surface of Mg Alloy[J].Plating & Finishing,2021,(8):10.[doi:10.3969/j.issn.1001-3849.2021.07.002]
[10]牟世辉*,李鑫宇.恒电流作用下AZ91D镁合金磷化膜生长研究[J].电镀与精饰,2021,(9):1.[doi:10.3969/j.issn.1001-3849.2021.09.001]
MU Shihui*,LI Xinyu.Growth of Phosphating Film on AZ91D Magnesium Alloy Under Constant Current[J].Plating & Finishing,2021,(8):1.[doi:10.3969/j.issn.1001-3849.2021.09.001]
备注/Memo
收稿日期: 2022-01-17 修回日期: 2022-03-14 作者简介: 袁英( 1986 -),女,硕士,讲师,主要研究方向为材料工程, email : teacher_yuan7577@126.com 基金项目: 江西省教育厅科技项目( GJJ202910 )