Han Wenjing*,Song Jinchao,Zhang Xiaoguang.Research progress of nanoparticle/polymer composite anti-corrosion coatings on metal surface[J].Plating & Finishing,2023,(11):60-67.[doi:10.3969/j.issn.1001-3849.2023.11.009]
金属表面纳米粒子/聚合物复合防腐涂层的研究进展
- Title:
- Research progress of nanoparticle/polymer composite anti-corrosion coatings on metal surface
- 关键词:
- 金属表面; 防护涂层; 纳米粒子 / 聚合物; 防腐; 进展
- Keywords:
- metal surface ; protective coating ; nanoparticle/polymer ; anti-corrosion ; progress
- 分类号:
- TG178
- 文献标志码:
- A
- 摘要:
- 纳米材料( NMs )具有独特的性能, 由其构成的纳米粒子 / 聚合物复合涂层在金属表面防腐蚀方面是非常经济有效的。本文总结了氧化物基和碳基两种不同纳米材料对纳米粒子 / 聚合物涂层性能的影响,概述了典型纳米粒子 / 聚合物复合防腐涂层防腐机理, 表明碳基纳米材料可以作为提高防腐涂层阻隔性能的较有前途的纳米填料。最后展望了将纳米粒子 / 聚合物材料有效应用到金属表面防腐涂层中所面临的挑战和未来发展前景。
- Abstract:
- : Nanomaterials ( NMs ) have a wide range of engineering properties in shape and size. Nanoparticle/polymer composite coating is very economical and effective in corrosion protection of metal surface. The effects of two different nanomaterials , oxide and carbon , on the performance of nanoparticle/polymer coatings and the anti-corrosion mechanism of typical nano-particle/polymer composite coating were summarized. Carbon-based nanomaterials can be used as a promising nano- filler to improve the barrier performance of anti-corrosion coatings. Finally , the challenges and future development prospects of the effective application of nanoparticles/polymer materials to metal surface anti-corrosion coatings are proposed.
参考文献/References:
[1] Hou B, Li X, Ma X. The cost of corrosion in China[J]. NPJ Materials Degradation, 2017, 1(1): 1-10.
[2] Qian Y, Li Y, Jungwirth S, et al. The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: A review[J]. International Journal of Electrochemical Science, 2015, 10(12): 10756-10780.
[3] 杨琰嘉 , 孙文 , 王立达 , 等 . 刚性石墨烯基复合纳米填料的制备及其防腐性能研究 [J]. 材料保护 , 2022, 56(6), 1-10, 47.
[4] Gacitua W E, Ballerini A A, Zhang J. Polymer nanocomposites: synthetic and natural fillers: A review[J]. Maderas Cienciay tecnología, 2019, 7(3): 159-178.
[5] Shi X, Nguyen T A, Suo Z, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating[J]. Surface and Coatings Technology, 2010, 204(3): 237-245.
[6] 颜东 , 钟萍 , 袁建新 , 等 . 纳米材料的表面修饰及其改性环氧涂料耐蚀性能的研究进展 [J]. 材料保护 , 2022, 56(12), 156-165, 184.
[7] Conradi M, Kocijan A, Zorko M, et al. Damage resistance and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings[J]. Progress in Organic Coatings, 2015, 80: 20-26.
[8] B Ramezanzadeh, M M Attar. Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy- polyamide coating on hot-dip galvanized steel[J]. Progress in Organic Coatings. 2011, 71(3): 314-328.
[9] Ates M, Topkaya E. Nanocomposite film formations of polyaniline via TiO 2 , Ag, and Zn, and their corrosion protection properties[J]. Progress in Organic Coatings, 2015, 82: 33-40.
[10] Eduok U, Faye O, Ohaeri E, et al. Synthesis and characterization of protective silica reinforced hybrid poly(vinylpyrrolidone)/acrylate/silane nanocomposite coatings[J]. New Journal of Chemistry, 2020, 44(3): 1117-1126.
[11] Xu W H, Wang Z Y, Han, E H, et al. Corrosion performance of nano-ZrO 2 modified coatings in hot mixed acid solutions[J]. Materials, 2018, 11(6): 934.
[12] Zhang W B, Wang H Y, Lv C J, et al. Effects of CeO 2 geometry on corrosion resistance of epoxy coatings[J]. Surface Engineering, 2019, 36(2): 175-183.
[13] Liu T, Liu Y, Ye Y W, et al. Corrosion protective properties of epoxy coating containing tetraaniline modified nano- α -Fe 2 O 3 [J]. Progress in Organic Coatings, 2019, 132: 455-467.
[14] Rahman O, Kashif M, Ahmad S. Nanoferrite dispersed waterborne epoxy-acrylate: Anticorrosive nanocomposite coatings[J]. Progress in Organic Coatings, 2015, 80: 77-86.
[15] Kathalewar M, Sabnis A,Waghoo G. Effect of incorporation of surface treated zinc oxide on non-isocyanate polyurethane based nano-composite coatings[J]. Progress in Organic Coatings, 2013, 76(9): 1215-1229.
[16] Sekhavat P Z, Ghaemy M, Bordbar S. Effects of surface treatment of TiO 2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique[J], Progress in Organic Coatings, 2018, 119: 99-108.
[17] Haddadi S A, Mahdavian M, Karimi E. Evaluation of the corrosion protection properties of an epoxy coating containing sol – gel surface modified nano-zirconia on mild steel[J]. RSC Advances. 2015, 5(36): 28769-28777.
[18] Hosseini M G, Aboutalebi K. Enhancement the anticorrosive resistance of epoxy coatings by incorporation of CeO 2 @polyaniline@2-mercaptobenzotiazole nanocomposite[J]. Synthetic Metals, 2019, 250: 63-72.
[19] Shi S E, Zhang Z M, Yu L M. Hydrophobic polyaniline/modified SiO 2 coatings for anticorrosion protection[J]. Synthetic Metals, 2017, 233: 94-100.
[20] Alam J, Riaz U, Ashraf S M, et al. Corrosion-protective performance of nano polyaniline/ferrite dispersed alkyd coatings[J]. Journal of Coatings Technology and Research, 2008, 5(1): 123-128.
[21] Li H Q, Wang J H, Yang J X, et al. Large CeO 2 nanoflakes modified by graphene as barriers in waterborne acrylic coatings and the improved anticorrosion performance[J]. Progress in Organic Coatings, 2020, 143: 105607.
[22] An K, Long C, Sui Y, et al. Large-scale preparation of superhydrophobic cerium dioxide nanocomposite coating with UV resistance, mechanical robustness, and anti- corrosion properties[J]. Surface & Coatings Technology, 2020, 384: 125312.
[23] Shi X, NguyenT A, Suo Z, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating[J]. Surface & Coatings Technology, 2009, 204(3): 237-245.
[24] Nguyen T A, Nguyen T H, Pham T L, et al. Application of nano-SiO 2 and nano-Fe 2 O 3 for protection of steel rebar in chloride contaminated concrete: Epoxy nanocomposite coatings and nano-modified mortars[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(1): 427-436.
[25] Wang H, Wang R, Sun L. Mechanical and tribological characteristics of carbon nanotube-reinforced polyvi- nylidene fluoride (PVDF)/epoxy composites[J]. RSC Advances, 2016, 6(51): 45636-45644.
[26] Ramezanzadeh B, Rostami M. The effect of cerium-based conversion treatment on the cathodic delamina-tion and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems[J]. Applied Surface Science, 2017, 392: 1004-1016.
[27] Xie J, Hu J, Lin X D, et al. Robust and anti-corrosive PDMS/SiO 2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO 2 nanoparticles[J]. Applied Surface Science, 2018, 457: 870-880.
[28] Fedel M, Ahniyaz A, Ecco L G, et al. Deflorian. Electrochemical investigation of the inhibition effect of CeO 2 nanoparticles on the corrosion of mild steel[J]. Electrochim Acta, 2014, 131: 71-78.
[29] Zhao Y B, Zhang Z, Shi L Q, et al. Corrosion resistance of a self-healing multilayer film based on SiO 2 and CeO 2 nanoparticles layer-by-layer assembly on Mg alloys[J]. Materials Letters, 2019, 237: 14-18.
[30] Deyab M A. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2014, 268: 50-55.
[31] Madhan K A, Gasem Z M. In situ electrochemical synthesis of polyaniline/F-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5% NaCl solution[J]. Progress in Organic Coatings, 2015(2): 387-394.
[32] Wang X, Tang F, Qi X, et al. Enhanced protective coatings based on nanoparticle fullerene C60 for oil & gas pipeline corrosion mitigation[J]. Nanomaterials, 2019, 9(10): 1476.
[33] Kumar A, Ghosh P K, Yadav K L, et al. Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique[J]. Composites Part B: Engineering, 2017, 113: 291-299.
[34] Rajabi M, Rashed G R, Zaarei D. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel[J]. Corrosion Engineering Science and Technology, 2015, 50(7): 509-516.
[35] Vu C M, Bach Q V. Oxidized multiwall carbon nanotubes filled epoxy-based coating: Fabrication, anticorrosive, and mechanical characteristics[J]. Polymer Bulletin, 2021, 78(5): 2329-2339.
[36] Zhao Z, Guo Lei, Feng L, et al. Polydopamine functionalized graphene oxide nanocomposites reinforced the corrosion protection and adhesion properties of waterborne polyurethane coatings[J]. European Polymer Journal, 2019, 120: 109249.
[37] Huang W F, Xiao Y L, Huang Z J, et al. Super-hydrophobic polyaniline-TiO 2 hierarchical nanocomposite as anticorrosion coating[J]. Materials Letters, 2020, 258: 126822.
[38] Verma S, Mohantyb S, Nayaka S K. Preparation of hydrophobic epoxy-polydimethylsiloxane-graphene oxide nanocomposite coatings for antifouling application[J]. Soft Matter, 2020, 16(5): 1211-1226.
[39] Nazari M H, Shi X. Polymer-based nanocomposite coatings for anticorrosion applications, Industrial applications for intelligent polymers and coatings[M]. Springer International Publishing, 2016: 373-398.
[40] Kim C, Karayan A I, Milla J, et al. Smart coating embedded with pH-responsive nanocapsules containing a corrosion inhibiting agent[J]. ACS Applied Materials and Interfaces, 2020, 12(5): 6451-6459.
相似文献/References:
[1]宋进朝*,韩文静,陶 勇.溶胶-凝胶法在混凝土环境中材料防护的研究及应用[J].电镀与精饰,2019,(11):35.[doi:10.3969/j.issn.1001-3849.2019.11.008]
SONG Jinchao*,HAN Wenjing,TAO Yong.Research and Application of Materials Protected by Sol-Gel Method in Concrete Environment[J].Plating & Finishing,2019,(11):35.[doi:10.3969/j.issn.1001-3849.2019.11.008]
[2]韩文静*,宋进朝,张晓光.纳米复合智能防腐涂层在金属表面上的应用研究[J].电镀与精饰,2024,(7):83.[doi:10.3969/j.issn.1001-3849.2024.07.013]
Han Wenjing*,Song Jinchao,Zhang Xiaoguang.Research on the application of nanocomposite intelligent anticorrosive coatings on metal surfaces[J].Plating & Finishing,2024,(11):83.[doi:10.3969/j.issn.1001-3849.2024.07.013]
备注/Memo
收稿日期: 2023-02-22 修回日期: 2023-03-09 作者简介: 韩文静( 1985 —),女,硕士,副教授, email : hanwenjing19850122@126.com 基金项目: 2021 年度河南省高等学校重点科研项目资助计划( 21A880017 )?/html>