Zhao Chao,Wang Shuaixing*,Wang Huiting,et al.Optimization of chemical milling process and improvement of surface quality for 2060 aluminum-lithium alloy[J].Plating & Finishing,2024,(7):38-43.[doi:10.3969/j.issn.1001-3849.2024.07.006]
2060铝锂合金化学铣切工艺优化及表面质量改善
- Title:
- Optimization of chemical milling process and improvement of surface quality for 2060 aluminum-lithium alloy
- Keywords:
- 2060 aluminum-lithium alloy ; additive ; chemical milling ; surface roughness
- 分类号:
- TG146
- 文献标志码:
- A
- 摘要:
- 针对铝锂合金化铣过程中含锂相的溶解过快导致表面粗糙度高的问题,借助三维显微镜、动电位极化测试等手段研究了 Na 2 CO 3 及苯环类添加剂 RA-8 对 2060 铝锂合金化铣速度、表面粗糙度及溶解行为的影响,优化了化铣配方。结果表明:单一 Na 2 CO 3 即可抑制含锂相的溶解,其与 RA-8 的协同作用可进一步改善表面质量,且对化铣速度的影响较小;针对 2060 铝锂合金,较优的化铣参数为: NaOH 160 g/L , Na 2 S 30 g/L ,三乙醇胺( TEA ) 50 g/L , Na 2 CO 3 0.5 mol/L , RA-8 0.4 g/L , Al 3+ 0~70 g/L ,温度为 90 ℃ 。在此条件下化铣试样表面粗糙度( R a )为 0.95~1.21 μ m ,腐蚀速度为 20~50 μ m/min 。
- Abstract:
- : In order to solve the problem of high surface roughness caused by the rapid dissolution of lithium-containing phase in the process of chemical milling for aluminum-lithium alloy , the effects of Na 2 CO 3 and benzene ring additive RA-8 on the milling speed , surface roughness and dissolution behavior of 2060 aluminum-lithium alloy are studied by means of three-dimensional microscopy and potentiodynamic polarization test , and the chemical milling formula is optimized.The results show that Na 2 CO 3 alone can already inhibit the dissolution of lithium-containing phases , and its synergistic effect with RA-8 can further improve the surface quality , meanwhile their effect on the milling speed is small. For 2060 aluminum-lithium alloy , the optimal milling parameters are : NaOH 160 g/L , Na 2 S 30 g/L , triethanolamine ( TEA ) 50 g/L , Na 2 CO 3 0.5 mol/L , RA-8 0.4 g/L , Al 3+ 0-70 g/L , and 90 °C. Under this condition , the surface roughness ( R a ) of 2060 aluminum-lithium alloy treated by chemical milling is 0.95 μ m-1.21 μ m , and the corrosion rate is 20 μ m-50 μ m/min.
参考文献/References:
[1] Zou C L, Geng G H, Chen W Y. Development and application of aluminium-lithium alloy[C]. Applied Mechanics and Materials. Trans Tech Publications Ltd., 2014, 599: 12-17.
[2] 高彦军 , 刘西伟 , 刘旭升 , 等 . 2060-T8 铝锂合金顶锻式摩擦塞补焊接头组织性能研究 [J]. 电焊机 , 2022, 52(7): 69-75, 99.
[3] 刘晨 , 李劲风 , 宁红 , 等 . 2060 铝锂合金的淬透性 [J]. 中国有色金属学报 , 2019, 29(11): 2451-2458.
[4] Alexopoulos N D, Migklis E, Stylianos A, et al. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading[J]. International Journal of Fatigue, 2013, 56: 95-105.
[5] Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Ma terials Science and Engineering A, 1998, 257(1): 100-107.
[6] ?ak?r O, Temel H, Kiyak M. Chemical etching of Cu-ETP copper[J]. Journal of Materials Processing Technology, 2005, 162: 275-279.
[7] 沈连桂 . 化学铣切 [M]. 北京 : 国防工业出版社 , 1984.
[8] 易慧芝 , 邓飞跃 , 张忠亭 . 2197 铝锂合金化学铣切工艺研究 [J]. 表面技术 , 2010, 39(4): 73-76.
[9] 刘凤娟 , 陈永来 , 于峰 , 等 . 2195 铝锂合金的化学铣切工艺优化 [J]. 机械工程材料 , 2019, 43(2): 34-38, 42.
[10] Li Q, Wang J, Hu W. Optimizations of electric current assisted chemical milling condition of 2219 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 249: 379-385.
[11] 王帅东 , 张昕宇 , 赵武军 , 等 . 2195 铝锂合金碱性化学铣切工艺探究 [J]. 电镀与精饰 , 2020, 42(1): 33-35.
[12] 易雅楠 , 麻彦龙 , 罗肖肖 , 等 . 合金相对新型铝锂合金局部腐蚀行为的影响研究进展 [J]. 重庆理工大学学报 ( 自然科学 ), 2017, 31(4): 50-57.
[13] 蔡超 , 李劲风 , 王恒 , 等 . 铝锂合金晶间腐蚀敏感性与时效阶段的相关性 [J]. 稀有金属材料与工程 , 2015, 44(10): 2523-2528.
[14] 张莉 , 赵超 , 庞志伟 , 等 . ZnO 对 2219 铝合金在氢氧化钠溶液中化铣行为的影响 [J]. 电镀与精饰 , 2023, 45(8): 7-12.
[15] Yan Y, Qiu Y, Gharbi O, et al. Characterisation of Li in the surface film of a corrosion resistant Mg-Li(-Al-Y-Zr) alloy[J]. Applied Surface Science, 2019, 494: 1066-1071.
[16] 王海媛 , 卫英慧 , 杜华云 , 等 . 绿色缓蚀剂 SDDTC 对 AZ31B 镁合金的缓蚀作用及吸附行为 [J]. 中国腐蚀与防护学报 , 2018, 38(1): 62-67.
[17] 尹茂生 , 廖广其 , 文庆杰 , 等 . 铝合金筒段化学铣切工艺研究 [J]. 材料保护 , 2005, 38(8): 24-25.
[18] Zhang J, Klasky M, Letellier B C. The aluminum chemistry and corrosion in alkaline solutions[J]. Journal of Nuclear Materials, 2009, 384(2): 175-189.
[19] 汤倩倩 , 刘亚男 , 王江顺 , 等 . 油田污水注聚黏度影响及缓蚀剂的增粘作用 [J]. 应用化工 , 2013, 42(11): 2018-2020.
[20] Gharbi O, Birbilis N, Ogle K. Li reactivity during the surface pretreatment of Al-Li alloy AA2050-T3[J]. Electrochimica Acta, 2017, 243: 207-219.
相似文献/References:
[1]刘 玮,安成强*,郝建军,等.钼酸钠对AZ91D镁合金钒/锆复合转化膜性能的影响[J].电镀与精饰,2019,(8):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
LIU Wei,AN Chengqiang*,HAO Jianjun,et al.Effect of Na2MoO4 on Properties of Vanadium/Zirconate Conversion Coating on AZ91D Magnesium Alloy[J].Plating & Finishing,2019,(7):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
[2]徐振邦,陆振涛,柯喜敏,等.铝合金电子元器件的表面涂层与耐蚀性能研究[J].电镀与精饰,2019,(10):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
XU Zhenbang,LU Zhentao,KE Ximin,et al.Study on Surface Coating and Corrosion Resistance of Aluminum Alloy Electronic Components[J].Plating & Finishing,2019,(7):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
[3]张玉清,陈同彩?,王春霞,等.添加剂对无氰镀镉工艺性能的影响[J].电镀与精饰,2021,(8):16.[doi:10.3969/j.issn.1001-3849.2021.08.004]
ZHANG Yuqing,CHEN Tongcai,WANG Chunxia,et al.Effect of Additives on the Performance of Cyanide-Free Cadmium Plating[J].Plating & Finishing,2021,(7):16.[doi:10.3969/j.issn.1001-3849.2021.08.004]
[4]周苗淼,张 雨,沈喜训,等.芯片电镀铜添加剂的研究进展[J].电镀与精饰,2022,(2):60.[doi:10.3969/j.issn.1001-3849.2022.02.013]
ZHOU Miaomiao,ZHANG Yu,SHEN Xixun,et al.Research Progress of the Copper Electroplating Additives in Chip Manufacturing[J].Plating & Finishing,2022,(7):60.[doi:10.3969/j.issn.1001-3849.2022.02.013]
[5]邱 媛*,元 泉,杨志业,等.添加剂对HEDP镀铜溶液性能的影响[J].电镀与精饰,2022,(5):33.[doi:10.3969/j.issn.1001-3849.2022.05.006]
QIU Yuan*,YUAN Quan,YANG Zhiye,et al.Effects of Additive on the Properties of HEDP Copper Plating Solution[J].Plating & Finishing,2022,(7):33.[doi:10.3969/j.issn.1001-3849.2022.05.006]
[6]朱金海*,蒋发正,王柯淇. 添加剂对建筑6063铝型材表面转化膜耐蚀性能的影响 [J].电镀与精饰,2022,(10):17.[doi:10.3969/j.issn.1001-3849.2022.10.003]
ZHU Jinhai*,JIANG Fazheng,WANG Keqi.Effect of Additives on Corrosion Resistance of Conversion Coating on 6063 Aluminum Profiles[J].Plating & Finishing,2022,(7):17.[doi:10.3969/j.issn.1001-3849.2022.10.003]
[7]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(7):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[8]程庆,李宁,潘钦敏*,等.电解铜箔添加剂的研究进展及应用现状[J].电镀与精饰,2022,(12):69.[doi:10.3969/j.issn.1001-3849.2022.12.010]
CHENG Qing,LI Ning,PAN Qinmin*,et al.Research Progress and Application Status of Electrolytic Copper Foil Additives[J].Plating & Finishing,2022,(7):69.[doi:10.3969/j.issn.1001-3849.2022.12.010]
[9]代超熠,唐先忠,何 为,等.电解铜箔添加剂的研究进展[J].电镀与精饰,2024,(2):79.[doi:10.3969/j.issn.1001-3849.2024.02.011]
Tang Yao,hen Yuanming *.Research progress of electrolytic copper foil additives[J].Plating & Finishing,2024,(7):79.[doi:10.3969/j.issn.1001-3849.2024.02.011]
[10]张锦园,张 杰,白忠波,等.硫酸钛-钨酸钠复合添加剂对电解铜箔后处理形貌及抗剥离强度的影响[J].电镀与精饰,2024,(5):101.[doi:10.3969/j.issn.1001-3849.2024.05.014]
Zhang Jinyuan,Zhang Jie,Bai Zhongbo,et al.Effect of titanium sulfate and sodium tungstate composite additive on morphology and performance of electrolytic copper foil posttreatment?/html>[J].Plating & Finishing,2024,(7):101.[doi:10.3969/j.issn.1001-3849.2024.05.014]
备注/Memo
收稿日期: 2023-11-07 修回日期: 2023-11-19 作者简介: 赵超( 1996 —),男,硕士研究生, email : 623254570@qq.com * 通信作者: 王帅星,研究方向为航空材料表面处理及电化学加工, email : wsxxpg@126.com 2060