PDF下载 分享
[1]张鹏远*,师玉英,胡 楠,等.电镀过程中析氢反应的抑制与机理[J].电镀与精饰,2024,(2):71-78.[doi:10.3969/j.issn.1001-3849.2024.02.010]
 Zhang Pengyuan*,Shi Yuying,Hu Nan,et al.Inhibition and mechanism of hydrogen evolution reaction in electroplating process[J].Plating & Finishing,2024,(2):71-78.[doi:10.3969/j.issn.1001-3849.2024.02.010]
点击复制

电镀过程中析氢反应的抑制与机理

参考文献/References:



[1] 杨航城 , 田海燕 . 工艺参数对电镀镍钴合金及其性能的影响 [J]. 电镀与精饰 , 2021, 43(4): 5-10.

[2] 罗佐县 , 曹勇 . 氢能产业发展前景及其在中国的发展路径研究 [J]. 中外能源 , 2020, 25(2): 9-15

[3] 徐超 , 王淼宇 , 周建波 , 等 . 电沉积 Ni-Mo-Fe-La 合金析氢电极的工艺研究 [J]. 电镀与精饰 , 2020, 42(8): 7-12.

[4] 马军 . 电沉积法制备纳米晶 Ni-Co 合金镀层 [J]. 电镀与精饰 , 2019, 41(6): 1-4.

[5] 郜余军 , 马立群 , 曹歆昕 , 等 . 脉冲和直流电沉积 Ni-P 合金电极析氢电催化性能的研究 [J]. 电镀与涂饰 , 2010, 29(6): 1-3.

[6] Haixiang C, Dejun K. Comparison on electrochemical corrosion performances of arc and laser thermal sprayed Al-Ti-Ni coatings in marine environment[J]. Materials Chemistry and Physics, 2020, 251: 196-204.

[7] Xin Z, Tong Z, You L, et al. Enhanced uniformity, corrosion resistance and biological performance of Cu-incorporated TiO 2 coating produced by ultrasound-auxiliary micro-arc oxidation[J]. Applied Surface Science, 2021, 569: 585-596.

[8] Deo Y, Guha S, Sarkar K, et al. Electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties[J]. Applied Surface Science, 2020, 515: 119-126.

[9] Do Q, An H, Wang G, et al. Effect of cupric sulfate on the microstructure and corrosion behavior of nickel-copper nanostructure coatings synthesized by pulsed electrodeposition technique[J]. Corrosion Science, 2018, 147: 246-259.

[10] Meng G, Zhang C, Cheng Y, et al. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution[J]. Corrosion Science, 2008, 50: 3116-3122.

[11] Hillier E, Robinson M. Permeation measurements to study hydrogen uptake by steel electroplated with zinc – cobalt alloys[J]. Corrosion Science, 2006, 48: 1019-1035.

[12] Behera P, Rajagopalan S K, Brahimi S, et al. Effect of brush plating process variables on the microstructures of Cd and ZnNi coatings and hydrogen embrittlement[J]. Surface and Coatings Technology, 2021, 417(3): 127181.

[13] Reda Y, El-Shamy A M, Eessaa A K. Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130[J]. Ain Shams Engineering Journal, 2018, 9(4): 1691.

[14] Yu S H, Lyu A, Jang I S, et al. Hydrogen absorption, desorption and embrittlement of Zn and Zn-Ni electrodeposited bolts[J]. Journal of Materials Research and Technology, 2021, 11: 1604-1610.

[15] Zhang P Y, Xu Z, Zhang B, et al. Enhanced inhibition on hydrogen permeation during electrodeposition process by rare earth (RE = Ce) salt additive[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13803-13814.

[16] Lim C, Pyun S I. Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode[J]. Electrochimica Acta, 1993, 38(18): 2645-2652.

[17] Fran?ois R, Putnis C V, Montes-Hernandez G, et al. Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging[J]. Geochimica et Cosmochimica Acta, 2021, 159: 61-79.

[18] Kumar P, Chand P, Joshi A, et al. Rare earth substituted Bi 0.84 RE 0.16 FeO 3 (RE = La, Gd)-an efficient multiferroic photo-catalyst under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 45(34): 16944-16954.

[19] Rosalbino F, Delsante S, Borzone G. Electrocatalytic behaviour of Co-Ni-R (R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2008, 33: 6696-6703.

[20] Singhania A, Bhaskarwar N. Effect of rare earth (RE-La, Pr, Nd) metal-doped ceria nanoparticles on catalytic hydrogen iodide decomposition for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43: 4818-4825.

[21] Balusamy T, Nishimura T. In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2016, 199: 305-313.

相似文献/References:

[1]王晓丽,顾 海,周昭昌,等.铜镀层工艺参数优化的正交实验研究[J].电镀与精饰,2018,(12):19.[doi:10.3969/j.issn.1001?3849.2018.12.005]
 WANG Xiaoli,GU Hai,ZHOU Zhaochang,et al.Orthogonal Experimental Research on Optimization of Process Parameters of Copper Electroplating[J].Plating & Finishing,2018,(2):19.[doi:10.3969/j.issn.1001?3849.2018.12.005]
[2]王 秀.电镀智能监控系统设计[J].电镀与精饰,2018,(12):30.[doi:10.3969/j.issn.1001?3849.2018.12.007]
 WANG Xiu.Design of Intelligent Electroplating Monitoring System[J].Plating & Finishing,2018,(2):30.[doi:10.3969/j.issn.1001?3849.2018.12.007]
[3]王明亮,杨海燕,李 明,等.电镀硬金的研究现状[J].电镀与精饰,2019,(11):26.[doi:10.3969/j.issn.1001-3849.2019.11.007]
 WANG Mingliang,YANG Haiyan,LI Ming,et al.Research Progress on Hard Gold Electrodeposition[J].Plating & Finishing,2019,(2):26.[doi:10.3969/j.issn.1001-3849.2019.11.007]
[4]刘 光*,文 桦,徐启杰.基于TIA和PLC的全自动ABS塑料电镀控制系统设计[J].电镀与精饰,2020,(2):33.[doi:10.3969/j.issn.1001-3849.2020.02.007]
 LIU Guang*,WEN Hua,XU Qijie.Design of Automatic Control System for ABS Plastics Electroplating Line Based on TIA and PLC[J].Plating & Finishing,2020,(2):33.[doi:10.3969/j.issn.1001-3849.2020.02.007]
[5]宋青员,何荣祥,陈朝会,等.高度梯度微纳结构的自动化电镀制备方法[J].电镀与精饰,2020,(7):23.[doi:10.3969/j.issn.1001-3849.2020.07.0050]
 SONG Qingyuan,HE Rongxiang,CHEN Chaohui,et al.Automated Electroplating for Gradient Height Micro-nano Structures Fabricating[J].Plating & Finishing,2020,(2):23.[doi:10.3969/j.issn.1001-3849.2020.07.0050]
[6]雷翔霄?,徐立娟,唐春霞.基于神经网络PID算法的镀液温度控制系统[J].电镀与精饰,2020,(8):39.[doi:10.3969/j.issn.1001-3849.2020.08.0080]
 LEI Xiangxiao,XU Lijuan,et al.Bath Temperature Control System Based on Neural Network PID[J].Plating & Finishing,2020,(2):39.[doi:10.3969/j.issn.1001-3849.2020.08.0080]
[7]范文俊,崔红兵,王 萌,等.从三价铬溶液电沉积非晶Cr-C镀层及其性能研究[J].电镀与精饰,2020,(12):37.[doi:10.3969/j.issn.1001-3849.2020.12.0080]
 FAN Wenjun,CUI Hongbing,WANG Meng,et al.Preparation and Performance Study of Amorphous Cr-C Coating Electrodeposited from Trivalent Chromium Solution[J].Plating & Finishing,2020,(2):37.[doi:10.3969/j.issn.1001-3849.2020.12.0080]
[8]薛迪杰*,陈 军,陈景召.基于ZigBee的电镀生产线温度集中监控系统[J].电镀与精饰,2021,(1):31.[doi:10.3969/j.issn.1001-3849.2021.01.0060]
 XUE Dijie*,CHEN Jun,CHEN Jingzhao,et al.Temperature Centralized Monitoring System of Electroplating Production Line Based on ZigBee[J].Plating & Finishing,2021,(2):31.[doi:10.3969/j.issn.1001-3849.2021.01.0060]
[9]王昱开*.不锈钢工具电镀金刚石工艺研究[J].电镀与精饰,2021,(3):6.[doi:10.3969/j.issn.1001-3849.2021.03.002]
 WANG Yukai*.王昱开*[J].Plating & Finishing,2021,(2):6.[doi:10.3969/j.issn.1001-3849.2021.03.002]
[10]杨航城,田海燕.工艺参数对电镀镍钴合金及其性能的影响[J].电镀与精饰,2021,(4):5.[doi:10.3969/j.issn.1001-3849.2021.04.002]
 YANG Hangcheng,TIAN Haiyan.Effect of Process Parameters on Electrodepositing Ni-Co Alloy and Its Properties[J].Plating & Finishing,2021,(2):5.[doi:10.3969/j.issn.1001-3849.2021.04.002]

备注/Memo

收稿日期: 2023-10-08 修回日期: 2023-11-20 * 通信作者: 张鹏远( 1994 —),男,博士,工程师, email : zhangpengyuan1994@126.com?/html>

更新日期/Last Update: 2024-02-05