Zhang Pengyuan*,Shi Yuying,Hu Nan,et al.Inhibition and mechanism of hydrogen evolution reaction in electroplating process[J].Plating & Finishing,2024,(2):71-78.[doi:10.3969/j.issn.1001-3849.2024.02.010]
电镀过程中析氢反应的抑制与机理
- Title:
- Inhibition and mechanism of hydrogen evolution reaction in electroplating process
- Keywords:
- electroplating ; hydrogen permeation ; rare earth salts ; hydrogen evolution reaction
- 分类号:
- TG172
- 文献标志码:
- A
- 摘要:
- 电镀是工业上常用的表面处理技术之一,然而电镀过程会伴随析氢反应( HER ),产生的氢原子一部分进入基体之中,导致镀层鼓泡、基体开裂或氢脆等危害。目前工业中常用的解决措施是对镀后工件在 200 ℃ 除氢 4~24 h ,但长时间的除氢处理不仅生产效率低,还会消耗大量能源。本文通过 Devanathan-Stachurski 双电解池研究稀土盐对电镀过程中氢渗透行为的影响,同时探索在电镀过程稀土盐作为添加剂对电镀过程中阴极析氢反应的影响,并基于 Iyer-Pickering-Zamanzadeh ( IPZ )模型,拟合计算添加稀土盐后电镀过程中 HER 动力学参数。结果表明:稀土盐显著抑制电镀过程中的氢渗透,可以节约电镀后处理时间和减少除氢后处理过程的能量需求,为电镀行业的节能减排提供新的思路。
- Abstract:
- : Electroplating is a commonly used surface treatment technology in the industry. However , the plating processes are often accompanied by hydrogen evolution reactions ( HER ), resulting in the entry of some hydrogen atoms into the substrate , leading to bubbling , substrate cracking. This problem in industry is solved by employing a 4 – 24 h annealing post treatment of plated parts at 200 ℃ to eliminate the potential for hydrogen embrittlement. However , the long time of dehydrogenation not only reduces the production efficiency , but also consumes fossil energy. The effect of rare earth salts on the hydrogen permeation behavior during electroplating was investigated using the Devanathan-Stachurski double electrolytic cell technique. At the same time , the influence of rare earth salt as an additive on cathode hydrogen evolution during electroplating was explored. The effect of rare earth salts on the kinetic parameters of HER in electroplating was calculated using the Iyer-Pickering-Zamanzadeh ( IPZ ) model. The results indicate that rare earth salts can inhibit hydrogen permeation during electroplating. Consequently , it reduces the post treatment time and the use of fossil fuels , thus providing a new idea for energy saving and emission reduction.
参考文献/References:
[1] 杨航城 , 田海燕 . 工艺参数对电镀镍钴合金及其性能的影响 [J]. 电镀与精饰 , 2021, 43(4): 5-10.
[2] 罗佐县 , 曹勇 . 氢能产业发展前景及其在中国的发展路径研究 [J]. 中外能源 , 2020, 25(2): 9-15
[3] 徐超 , 王淼宇 , 周建波 , 等 . 电沉积 Ni-Mo-Fe-La 合金析氢电极的工艺研究 [J]. 电镀与精饰 , 2020, 42(8): 7-12.
[4] 马军 . 电沉积法制备纳米晶 Ni-Co 合金镀层 [J]. 电镀与精饰 , 2019, 41(6): 1-4.
[5] 郜余军 , 马立群 , 曹歆昕 , 等 . 脉冲和直流电沉积 Ni-P 合金电极析氢电催化性能的研究 [J]. 电镀与涂饰 , 2010, 29(6): 1-3.
[6] Haixiang C, Dejun K. Comparison on electrochemical corrosion performances of arc and laser thermal sprayed Al-Ti-Ni coatings in marine environment[J]. Materials Chemistry and Physics, 2020, 251: 196-204.
[7] Xin Z, Tong Z, You L, et al. Enhanced uniformity, corrosion resistance and biological performance of Cu-incorporated TiO 2 coating produced by ultrasound-auxiliary micro-arc oxidation[J]. Applied Surface Science, 2021, 569: 585-596.
[8] Deo Y, Guha S, Sarkar K, et al. Electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties[J]. Applied Surface Science, 2020, 515: 119-126.
[9] Do Q, An H, Wang G, et al. Effect of cupric sulfate on the microstructure and corrosion behavior of nickel-copper nanostructure coatings synthesized by pulsed electrodeposition technique[J]. Corrosion Science, 2018, 147: 246-259.
[10] Meng G, Zhang C, Cheng Y, et al. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution[J]. Corrosion Science, 2008, 50: 3116-3122.
[11] Hillier E, Robinson M. Permeation measurements to study hydrogen uptake by steel electroplated with zinc – cobalt alloys[J]. Corrosion Science, 2006, 48: 1019-1035.
[12] Behera P, Rajagopalan S K, Brahimi S, et al. Effect of brush plating process variables on the microstructures of Cd and ZnNi coatings and hydrogen embrittlement[J]. Surface and Coatings Technology, 2021, 417(3): 127181.
[13] Reda Y, El-Shamy A M, Eessaa A K. Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130[J]. Ain Shams Engineering Journal, 2018, 9(4): 1691.
[14] Yu S H, Lyu A, Jang I S, et al. Hydrogen absorption, desorption and embrittlement of Zn and Zn-Ni electrodeposited bolts[J]. Journal of Materials Research and Technology, 2021, 11: 1604-1610.
[15] Zhang P Y, Xu Z, Zhang B, et al. Enhanced inhibition on hydrogen permeation during electrodeposition process by rare earth (RE = Ce) salt additive[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13803-13814.
[16] Lim C, Pyun S I. Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode[J]. Electrochimica Acta, 1993, 38(18): 2645-2652.
[17] Fran?ois R, Putnis C V, Montes-Hernandez G, et al. Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging[J]. Geochimica et Cosmochimica Acta, 2021, 159: 61-79.
[18] Kumar P, Chand P, Joshi A, et al. Rare earth substituted Bi 0.84 RE 0.16 FeO 3 (RE = La, Gd)-an efficient multiferroic photo-catalyst under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 45(34): 16944-16954.
[19] Rosalbino F, Delsante S, Borzone G. Electrocatalytic behaviour of Co-Ni-R (R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2008, 33: 6696-6703.
[20] Singhania A, Bhaskarwar N. Effect of rare earth (RE-La, Pr, Nd) metal-doped ceria nanoparticles on catalytic hydrogen iodide decomposition for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43: 4818-4825.
[21] Balusamy T, Nishimura T. In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2016, 199: 305-313.
相似文献/References:
[1]王晓丽,顾 海,周昭昌,等.铜镀层工艺参数优化的正交实验研究[J].电镀与精饰,2018,(12):19.[doi:10.3969/j.issn.1001?3849.2018.12.005]
WANG Xiaoli,GU Hai,ZHOU Zhaochang,et al.Orthogonal Experimental Research on Optimization of Process Parameters of Copper Electroplating[J].Plating & Finishing,2018,(2):19.[doi:10.3969/j.issn.1001?3849.2018.12.005]
[2]王 秀.电镀智能监控系统设计[J].电镀与精饰,2018,(12):30.[doi:10.3969/j.issn.1001?3849.2018.12.007]
WANG Xiu.Design of Intelligent Electroplating Monitoring System[J].Plating & Finishing,2018,(2):30.[doi:10.3969/j.issn.1001?3849.2018.12.007]
[3]王明亮,杨海燕,李 明,等.电镀硬金的研究现状[J].电镀与精饰,2019,(11):26.[doi:10.3969/j.issn.1001-3849.2019.11.007]
WANG Mingliang,YANG Haiyan,LI Ming,et al.Research Progress on Hard Gold Electrodeposition[J].Plating & Finishing,2019,(2):26.[doi:10.3969/j.issn.1001-3849.2019.11.007]
[4]刘 光*,文 桦,徐启杰.基于TIA和PLC的全自动ABS塑料电镀控制系统设计[J].电镀与精饰,2020,(2):33.[doi:10.3969/j.issn.1001-3849.2020.02.007]
LIU Guang*,WEN Hua,XU Qijie.Design of Automatic Control System for ABS Plastics Electroplating Line Based on TIA and PLC[J].Plating & Finishing,2020,(2):33.[doi:10.3969/j.issn.1001-3849.2020.02.007]
[5]宋青员,何荣祥,陈朝会,等.高度梯度微纳结构的自动化电镀制备方法[J].电镀与精饰,2020,(7):23.[doi:10.3969/j.issn.1001-3849.2020.07.0050]
SONG Qingyuan,HE Rongxiang,CHEN Chaohui,et al.Automated Electroplating for Gradient Height Micro-nano Structures Fabricating[J].Plating & Finishing,2020,(2):23.[doi:10.3969/j.issn.1001-3849.2020.07.0050]
[6]雷翔霄?,徐立娟,唐春霞.基于神经网络PID算法的镀液温度控制系统[J].电镀与精饰,2020,(8):39.[doi:10.3969/j.issn.1001-3849.2020.08.0080]
LEI Xiangxiao,XU Lijuan,et al.Bath Temperature Control System Based on Neural Network PID[J].Plating & Finishing,2020,(2):39.[doi:10.3969/j.issn.1001-3849.2020.08.0080]
[7]范文俊,崔红兵,王 萌,等.从三价铬溶液电沉积非晶Cr-C镀层及其性能研究[J].电镀与精饰,2020,(12):37.[doi:10.3969/j.issn.1001-3849.2020.12.0080]
FAN Wenjun,CUI Hongbing,WANG Meng,et al.Preparation and Performance Study of Amorphous Cr-C Coating Electrodeposited from Trivalent Chromium Solution[J].Plating & Finishing,2020,(2):37.[doi:10.3969/j.issn.1001-3849.2020.12.0080]
[8]薛迪杰*,陈 军,陈景召.基于ZigBee的电镀生产线温度集中监控系统[J].电镀与精饰,2021,(1):31.[doi:10.3969/j.issn.1001-3849.2021.01.0060]
XUE Dijie*,CHEN Jun,CHEN Jingzhao,et al.Temperature Centralized Monitoring System of Electroplating Production Line Based on ZigBee[J].Plating & Finishing,2021,(2):31.[doi:10.3969/j.issn.1001-3849.2021.01.0060]
[9]王昱开*.不锈钢工具电镀金刚石工艺研究[J].电镀与精饰,2021,(3):6.[doi:10.3969/j.issn.1001-3849.2021.03.002]
WANG Yukai*.王昱开*[J].Plating & Finishing,2021,(2):6.[doi:10.3969/j.issn.1001-3849.2021.03.002]
[10]杨航城,田海燕.工艺参数对电镀镍钴合金及其性能的影响[J].电镀与精饰,2021,(4):5.[doi:10.3969/j.issn.1001-3849.2021.04.002]
YANG Hangcheng,TIAN Haiyan.Effect of Process Parameters on Electrodepositing Ni-Co Alloy and Its Properties[J].Plating & Finishing,2021,(2):5.[doi:10.3969/j.issn.1001-3849.2021.04.002]
备注/Memo
收稿日期: 2023-10-08 修回日期: 2023-11-20 * 通信作者: 张鹏远( 1994 —),男,博士,工程师, email : zhangpengyuan1994@126.com?/html>