ZHAO Jing,LIU Shiwei,YANG Yuxin,et al.Electrodeposition of Au Nanoparticle-Graphene Composites Modified Electrode for Ampicillin Detection[J].Plating & Finishing,2022,(11):41-46.[doi:10.3969/j.issn.1001-3849.2022.11.008]
电沉积制备纳米金-石墨烯复合材料修饰电极测定氨苄西林
- Title:
- Electrodeposition of Au Nanoparticle-Graphene Composites Modified Electrode for Ampicillin Detection
- Keywords:
- electrodeposition ; Au nanoparticle ; graphene ; ampicillin
- 分类号:
- O652.1
- 文献标志码:
- A
- 摘要:
- 采用一步电沉积法在抛光处理后的玻碳电极表面制备纳米金 - 还原氧化石墨烯( AuNPs-rGO )复合材料,利用循环伏安法和电化学阻抗法研究 AuNPs-rGO 复合材料的电化学性质,并将其应用于氨苄西林分子印迹电化学传感器的构建中。结果表明:采用一步电沉积法制备的 AuNPs-rGO 复合材料具有制备过程简单可控,避免使用强还原剂带来污染的优点,仅需 250 s 就可在玻碳电极表面制备出导电性好、稳定性高的 AuNPs-rGO 复合材料。将其应用于氨苄西林分子印迹电化学传感器的构建可有效提高传感器的检测灵敏度和稳定性,实现氨苄西林的快速、灵敏检测。传感器的线性范围为 3.00×10 -9 ~ 7.00×10 -6 mol·L -1 ,最低检出限为 1.26×10 -9 mol·L -1 ( S / N = 3 )。
- Abstract:
- : Au nanoparticle-reduced graphene oxide ( AuNPs-rGO ) composites were prepared on polished glassy carbon electrode by one-step electrodeposition method , the electrochemical properties of AuNPs-rGO composites were investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements , and AuNPs-rGO composites were applied to construct ampicillin molecularly imprinted electrochemical sensor. The results showed that AuNPs-rGO composites prepared by one-step electrodeposition method had many advantages such as simple and controllable preparation processes , could avoid pollution caused by strong reducing agent , and it only took 250 s to prepare AuNPs-rGO composites with good conductivity and high stability at glassy carbon electrode. AuNPs-rGO composites could effectively improve the detection sensitivity and stability of the ampicillin molecularly imprinted electrochemical sensor , and the rapid and sensitive detection of ampicillin was achieved. The linear range of the sensor was from 3.00×10 -9 to 7.00×10 -6 mol·L -1 , and the limit of detection was 1.26×10 -9 mol·L -1 ( S / N = 3 ) .
参考文献/References:
[1] Taghdisia S M, Daneshc N M, Nameghi M A, et al. An electrochemical sensing platform based on ladder-shaped DNA structure and label-free aptamer for ultrasensitive detection of ampicillin [J]. Biosensors and Bioelectronics, 2019 (133): 230-235.
[2] Wei S L, Liu Y, Hua T, et al. Molecularly imprinted electrochemical sensor for the determination of ampicillin based on a gold nanoparticle and multiwalled carbon nanotube-coated pt electrode [J]. Journal of Applied Polymer Science, 2014, 131(16): 40613.
[3] Yan T, Feng Y X, Ren X, et al. Fabrication of CDs hybrid MIL-68(In) derived In 2 O 3 -In 2 S 3 hollow tubular heterojunction and their exceptional self-powered PEC aptasensing properties for ampicillin detecting [J]. Journal of Materiomics, 2021, 7(4): 721-727.
[4] Raziq A, Kidakova A, Boroznjak R, et al. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen [J]. Biosensors and Bioelectronics, 2021 (178): 113029.
[5] Cheubong C, Eri Takano E, Kitayama Y, et al. Molecularly imprinted polymer nanogel-based fluorescence sensing of pork contamination in halal meat extracts [J]. Biosensors and Bioelectronics, 2021 (172): 112775.
[6] Wang L L, Ma Y, Wang L S, et al. High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology [J]. Biosensors and Bioelectronics, 2021 (178): 113056.
[7] Shaabani N, Chan N W C, Jemere A B. A molecularly imprinted sol-gel electrochemical sensor for naloxone determination [J]. Nanomaterials, 2021, 11(3): 631.
[8] Zouaoui F, Bourouina-Bacha S, Bourouina M, et al. Electrochemical sensors based on molecularly imprinted chitosan: A review [J]. Trends in Analytical Chemistry, 2020 (130): 115982.
[9] Lian W J, Liu S, Wang L, et al. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes [J]. Biosensors and Bioelectronics, 2015 (73): 214-220.
[10] Nezhadali A, Bonakdar G A. Multivariate optimization of mebeverine analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles [J]. Journal of Food and Drug Analysis, 2019, 27 (1): 305-314.
[11] Mugo S M, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat [J]. Analytical and Bioanalytical Chemistry, 2020 (412): 1825-1833.
[12] Li S S, Zhong T T, Long Q X, et al. A gold nanoparticles-based molecularly imprinted electrochemical sensor for histamine specific-recognition and determination [J]. Microchemical Journal, 2021 (171): 106844.
[13] Liu R, Li J, Zhong T S, et al. Graphene modified molecular imprinting electrochemical sensor for determining the content of dopamine [J]. Current Analytical Chemistry, 2019, 15 (6): 628-634.
[14] Zaidi S A. Utilization of an environmentally-friendly monomer for an efficient and sustainable adrenaline imprinted electrochemical sensor using graphene [J]. Electrochimica Acta, 2018 (274): 370-377.
[15] Qi P P, Wang J, Wang X Y, et al. Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs [J]. RSC Advances, 2018 (8): 25334-25341.
[16] Sarpong K A, Zhang K, Luan Y, et al. Development and application of a novel electrochemical sensor based on AuNPs and difunctional monomer-MIPs for the selective determination of Tetrabromobisphenol-S in water samples [J]. Microchemical Journal, 2020 (154): 104526.
[17] Li S S, Long Q X, Liu Y W, et al. Surface molecularly imprinted polymer film with poly(p-aminothiophenol) outer layer coated on gold nanoparticles inner layer for highly sensitive and selective sensing paraoxon [J]. Polymers, 2017, 9(8): 359.
[18] Shen M M, Kan X W, et al. Aptamer and molecularly imprinted polymer: Synergistic recognition and sensing of dopamine [J]. Electrochimica Acta, 2021 (367): 137433.
[19] Lian W J, Liu S, Yu J Y, et al. Determination of oxytetracycline with a gold electrode modified by chitosan carbon nanotubes multilayer films and gold nanoparticles [J]. Analytical Letters, 2013, 46 (7): 1117-1131.
[20] Lian W J, Yu X, Wang L, et al. Biomacromolecular logic devices based on simultaneous electrocatalytic and electrochemiluminescence responses of Ru(bpy) 3 2+ at molecularly imprinted polymer film electrodes [J]. The Journal of Physical Chemistry C, 2015, 119(34): 20003-20010.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(11):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(11):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(11):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(11):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(11):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(11):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(11):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(11):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(11):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(11):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
备注/Memo
收稿日期: 2022-04-19 修回日期: 2022-04-25 作者简介: 赵晶( 2000 —),女,本科生, email : 2837901672@qq.com 通信作者: 廉文静, email : lwjjue@126.com 基金项目: 天津市高等学校基本科研业务费天津农学院青年教师创新基金项目( 2016JNYB03 );国家级大学生创新训 练计划项目( 202010061004 );国家自然科学基金青年基金项目( 22102115 )