Hu Gaobin,Qian Yongwu*,et al.Analysis of structure and corrosion performance of MAO layer of aluminum/steel joint for steam turbine[J].Plating & Finishing,2023,(1):33-38.[doi:10.3969/j.issn.1001-3849.2023.01.006]
汽轮机用铝/钢接头MAO层结构和腐蚀性能分析
- Title:
- Analysis of structure and corrosion performance of MAO layer of aluminum/steel joint for steam turbine
- Keywords:
- current density ; aluminum/steel joint ; MAO layer ; microstructure ; corrosion performance
- 分类号:
- TQ153
- 文献标志码:
- A
- 摘要:
- 火电厂热能动力多是通过汽轮机来提供,但机体与叶片容易受到剥落腐蚀( Exfoliation corrosion , EXCO )溶液的腐蚀而发生破坏,进而引起部件寿命的缩短。为了提高汽轮机叶片连接区域的运行稳定性能,选择 45 钢和 7075 铝合金焊接接头作为测试材料,在其表面生成微弧氧化( Microarc oxidation , MAO )层,分析了 EXCO 液体对 MAO 层的腐蚀作用机理。研究结果表明:逐渐提高电流密度后,氧化层厚度增加,形成了更大的放电孔洞,孔洞数量明显增多。电流密度 10 A/dm 2 下制备的 MAO 层结构致密,主要存在 γ -Al 2 O 3 与 α -Al 2 O 3 两种组织相。此外,该条件下制备的 MAO 层形成了具有不同尺寸的腐蚀坑,只有少部分 EXCO 进入表层组织中, MAO 层厚度与组织致密度对 EXCO 阻碍效果具有直接影响。
- Abstract:
- : Thermal power is mostly provided by steam turbines in thermal power plants , but the body and blades are easily damaged by the corrosion of exfoliation corrosion ( EXCO ) solution , which will shorten the service life of components. In order to improve the operation stability of the turbine blade connection area , 45 steel and 7075 aluminum alloy welded joints were selected as test materials , and microarc oxidation ( MAO ) layers were formed on their surfaces. The corrosion mechanism of EXCO liquid on MAO layers was analyzed. The results show that when the current density is gradually increased , the thickness of oxide layer increases , and larger discharge holes are formed , and the number of holes is significantly increased. The MAO layer prepared at current density of 10 A/dm 2 has a compact structure and mainly contains γ -Al 2 O 3 and α -Al 2 O 3 . In addition , the MAO layer prepared under this condition forms corrosion pits with different sizes , and only a small part of EXCO enters the surface structure. The thickness of the MAO layer and the tissue density have a direct impact on the EXCO barrier effect.
参考文献/References:
[1] 朱鼎 , 章晓波 . GZ91K 镁合金含石墨微弧氧化膜层的耐蚀性能 [J]. 表面技术 , 2020, 49(7): 53-59.
[2] 马颖 , 张青菊 , 安凌云 , 等 . 电压对纯镁微弧氧化膜层电化学腐蚀行为的影响 [J]. 兰州理工大学学报 , 2020, 46(3): 1-6.
[3] 王晓波 , 杨国华 , 全风美 , 等 . 微弧氧化处理对铝合金耐霉菌腐蚀特性的影响 [J]. 金属热处理 , 2020, 45(5): 90-96.
[4] 张菊梅 , 王凯 , 段鑫 , 等 . LA103Z 镁锂合金微弧氧化膜层微观组织及腐蚀行为 [J]. 特种铸造及有色合金 , 2020, 40(5): 474-480.
[5] 花天顺 , 宋仁国 , 宗玙 , 等 . 恒载荷下的微弧氧化后 7050 铝合金在不同 pH 值 NaCl 溶液中的腐蚀行为 [J]. 表面技术 , 2020, 49(5): 269-278.
[6] 宋雨来 , 刘庆 , 王海洋 . 挤压镁合金腐蚀与防护研究进展 [J]. 表面技术 , 2020, 49(5): 112-119.
[7] 唐慧慧 , 孙琳 , 陈琼 , 等 . 7N01 铝合金微弧氧化膜的腐蚀行为 [J]. 电镀与涂饰 , 2020, 39(7): 410-415.
[8] Martinelli L, Dufrenoy T, Jaakou K, et al. High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy[J]. Journal of Nuclear Materials, 2008, 376: 282-288.
[9] 赵婧 . 镁合金表面 MAO/HA/CNTs 涂层的电化学腐蚀性能 [J]. 陶瓷 , 2020(4): 27-35.
[10] 王伟 , 赵景茂 , 魏世雄 , 等 . 硬脂酸改性处理 TC4 钛合金微弧氧化膜层耐蚀性的研究 [J]. 北京化工大学学报 ( 自然科学版 ), 2020, 47(1): 67-74.
[11] 雷欣 , 林乃明 , 邹娇娟 , 等 . 铝合金微弧氧化的研究进展 [J]. 表面技术 , 2019, 48(12): 10-22.
[12] 杜春燕 , 赵晖 , 赵海涛 , 等 . LY12 铝合金表面黑色微弧氧化层的制备 [J]. 材料保护 , 2019, 52(12): 63-68.
[13] 马颖 , 刘金忠 , 安凌云 , 等 . AM60B 镁合金微弧氧化膜的电化学腐蚀行为 [J]. 兰州理工大学学报 , 2020, 46(2): 13-18.
[14] Artín F J M, Soler L, Hernández F, et al. Oxide layer stability in lead-bismuth at high temperature[J]. Journal of Nuclear Materials, 2004, 335: 194-198.
[15] 李猛 , 陈树海 , 杨磊磊 , 等 . 铝合金 / 碳钢激光 -TIG 复合热源熔钎焊工艺与接头显微结构分析 [J]. 焊接学报 , 2016, 37(12): 21-24, 130.
[16] 徐国建 , 麻明章 , 杭争翔 , 等 . 铝合金与低碳钢异种金属材料的激光 - 压轮焊接 [J]. 焊接学报 , 2015, 36(2): 23-26, 114.
[17] 王博 , 薛松柏 , 黄杰 , 等 . 钛和锶对舰船用 ER4043 铝合金焊丝显微组织和性能的影响 [J]. 焊接学报 , 2015, 36(6): 73-76, 116-117.
[18] 方云鹏 , 杜克勤 , 郭泉忠 , 等 . 负向电压对 LA91 镁锂合金微弧氧化膜耐蚀性的影响 [J]. 电镀与精饰 , 2021, 43(3): 21-26.
[19] 马灿 , 谭澄宇 , 覃思思 , 等 . 时效对 7056 铝合金在 EXCO 溶液中剥落腐蚀行为的影响 [J]. 腐蚀与防护 , 2016, 37(2): 93-99.
[20] 祁星 , 宋仁国 , 祁文娟 , 等 . 7050 铝合金在 EXCO 溶液中的腐蚀与氢脆对拉伸性能的影响 [J]. 稀有金属材料与工程 , 2015, 44(11): 2852-2856.
相似文献/References:
[1]徐 曦,邓乐萍.一起铝合金镀银起泡质量问题的研究探讨[J].电镀与精饰,2021,(4):44.[doi:10.3969/j.issn.1001-3849.2021.04.010]
XU Xi,DENG Leping.Study on the Blistering Quality Problem of Aluminum Alloy Silver Plating[J].Plating & Finishing,2021,(1):44.[doi:10.3969/j.issn.1001-3849.2021.04.010]
[2]崔琳琳,庄向仕,陈雅兵.电流密度对建筑用6463铝合金柠檬酸阳极氧化膜性能的影响[J].电镀与精饰,2021,(8):1.[doi:10.3969/j.issn.1001-3849.2021.08.001]
CUI Linlin,ZHUANG Xiangshi,CHEN Yabing.Effect of Current Density on Properties of Citric Acid Anodic Oxide Films on 6463 Aluminum Alloy Used for Construction[J].Plating & Finishing,2021,(1):1.[doi:10.3969/j.issn.1001-3849.2021.08.001]
[3]田佩佩,牛宗伟*,刘可峰,等.电流密度对超疏水Ni-MoS2-Al2O3复合镀层润湿性的影响[J].电镀与精饰,2021,(10):14.[doi:10.3969/j.issn.1001-3849.2021.10.003]
TIAN Peipei,NIU Zongwei*,LIU Kefeng,et al.Effect of Current Density on Wettability of Superhydrophobic Ni-MoS2-Al2O3 Composite Coating[J].Plating & Finishing,2021,(1):14.[doi:10.3969/j.issn.1001-3849.2021.10.003]
[4]杜相如*,付 巍.电子器件功率模块用铝基板草酸阳极氧化工艺参数优化[J].电镀与精饰,2022,(2):41.[doi:10.3969/j.issn.1001-3849.2022.02.009]
DU Xiangru *,FU Wei.Optimization of Process Parameters for Oxalic Acid Anodic Oxidation of Aluminum Substrates for Electronic Devices Power Module[J].Plating & Finishing,2022,(1):41.[doi:10.3969/j.issn.1001-3849.2022.02.009]
[5]邢乐红*,王宜鑫,石鑫婷,等. 电流密度对镍电极电催化析氢性能的影响 [J].电镀与精饰,2022,(10):49.[doi:10.3969/j.issn.1001-3849.2022.10.008]
XING Lehong*,WANG Yixin,SHI Xinting,et al. Effect of Deposition Current on Electrocatalytic Hydrogen Evolution Performance of Electroplated Nickel [J].Plating & Finishing,2022,(1):49.[doi:10.3969/j.issn.1001-3849.2022.10.008]
[6]胡 杨*,李柱祥,胡水莲.基于恒压控制模式镀锡工艺研究[J].电镀与精饰,2024,(3):84.[doi:10.3969/j.issn.1001-3849.2024.03.012]
Hu Yang*,Li Zhuxiang,Hu Shuilian.Research on tin plating process based on constant voltage control mode[J].Plating & Finishing,2024,(1):84.[doi:10.3969/j.issn.1001-3849.2024.03.012]
[7]刘勇,董文仲.doi: 10.3969/j.issn.1001-3849.2025.04.002电参数对合金镀铁基体表面活化均匀性的影响[J].电镀与精饰,2025,(04):7.
Liu Yong,Dong Wenzhong*.The influence of electrical parameters on the substrate surface activation uniformity during alloy-iron plating[J].Plating & Finishing,2025,(1):7.
备注/Memo
收稿日期: 2021-12-09 修回日期: 2022-09-15 作者简介: 胡高斌( 1990 —),男,本科,工程师,主要从事火力发电厂相关方面的研究工作, email : wyj15026893492@163.com * 通信作者: 钱勇武, email : cr16895324681@163.com 基金项目: 江苏省科技厅前瞻性联合研究项目( BY2015070 )