Zhang Yanjia,Ling Huiqin*,Hang Tao,et al.The influence of poly-2-sulfur-2-propane sodium sulfonate on the electrodeposition of nanotwinned copper?/html>[J].Plating & Finishing,2023,(8):1-6.[doi:10.3969/j.issn.1001-3849.2023.08.001]
聚二硫二丙烷磺酸钠对电沉积纳米孪晶铜的影响
- Title:
- The influence of poly-2-sulfur-2-propane sodium sulfonate on the electrodeposition of nanotwinned copper?/html>
- 关键词:
- 纳米孪晶铜; 电沉积; ( 220 )择优取向
- Keywords:
- nanotwinned copper ; electrodeposition ; 220 -oriented
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 以聚二硫二丙烷磺酸钠( SPS )、明胶蛋白胨( GP )、氯离子为添加剂采用直流电镀制备了高度( 220 )择优取向的纳米孪晶铜,并探究了其形核机理。结果表明,加入 SPS 会使镀层由( 111 )和( 220 )取向转变为具有( 220 )择优取向的纳米孪晶铜,并且 SPS 浓度会强烈影响镀层的过渡层厚度。 SPS 和 GP 在铜表面竞争性吸附,使镀层的内应力比单一添加剂时更高,镀层通过形成( 220 )择优取向孪晶铜释放内应力。纳米孪晶铜的形核和生长受到电流密度和添加剂的共同影响,在合适的过电位下镀层才能通过形成孪晶来释放应变能。在 20 mg/L SPS 、 4 A/dm 2 条件下,孪晶结构最完整,过渡层最薄。
- Abstract:
- : The highly preferred ( 220 ) -oriented nanotwinned copper ( nt-Cu ) was fabricated by direct current electrodeposition with poly-2-sulfur-2-propane sodium sulfonate ( SPS ), gelatin peptone ( GP ) and chloride ion. The nucleation mechanism of nt-Cu was investigated. The results show that SPS could change the texture of the Cu films from ( 111 ) and ( 220 ) to highly preferred ( 220 ) . Besides , the concentration of SPS has strong influence on the thickness of the transition layer. SPS and GP would adsorb on the surface competitively , which makes the internal stress of the Cu films higher than that of single additive. The Cu films release the internal stresses by the formation of ( 220 ) -oriented nt-Cu. The nucleation and growth of nt-Cu is influenced by current density and additives. Under the appropriate overpotential , the Cu film could release the strain energy through the formation of twins. The twin structure is the most complete and the transition layer is the thinnest with 20 mg/L SPS and 4 A/dm 2 .
参考文献/References:
[1] Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422-426.
[2] Shen Y F, Lu L, Lu Q H, et al. Tensile properties of copper with nano-scale twins [J]. Scripta Materialia, 2005, 52(10): 989-994.
[3] Chen K C, Wu W W, Liao C N, et al. Observation of atomic diffusion at twin-modified grain boundaries in copper [J]. Science, 2008, 321(5892): 1066-1069.
[4] Zhao Y, Furnish T A, Kassner M E, et al. Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture [J]. Journal of Materials Research, 2012, 27(24): 3049-3057.
[5] Jin S, Pan Q S, Lu L. Microstructure dependence of direct-current electrodeposited bulk Cu with preferentially oriented nanotwins on the current densities [J]. Acta Metallurgica Sinica, 2013, 49(5): 635-640.
[6] Liu T C, Liu C M, Hsiao H Y, et al. Fabrication and characterization of (111)-oriented and nanotwinned Cu by DC electrodeposition [J]. Crystal Growth & Design, 2012, 12(10): 5012-5016.
[7] Sun F L, Liu Z Q, Li C F, et al. Bottom-up electrodeposition of large-scale nanotwinned copper within 3D through silicon via [J]. Materials (Basel), 2018, 11(2): 319.
[8] Hsiao H Y, Liu C M, Lin H W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper [J]. Science, 2012, 336(6084): 1007-1010.
[9] Chiu W L, Liu C M, Haung Y S, et al. Formation of nearly void-free Cu 3 Sn intermetallic joints using nanotwinned Cu metallization [J]. Applied Physics Letters, 2014, 104: 171902.
[10] Tseng I H, Shie K C, Lin B T H, et al. Electromigration in 2 μ m redistribution lines and Cu-Cu bonds with highly <111>-oriented nanotwinned Cu [C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC). 2020: 479-484.
[11] Andrews P V, West M B, Robeson C R. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium [J]. Philosophical Magazine, 1969, 19(161): 887-898.
[12] Cui B Z, Han K, Xin Y, et al. Highly textured and twinned Cu films fabricated by pulsed electrodeposition [J]. Acta Materialia, 2007, 55(13): 4429-4438.
[13] Chan T C, Chueh Y L, Liao C. Manipulating the crystallographic texture of banotwinned Cu films by electrodeposition [J]. Crystal Growth & Design, 2011, 11(11): 4970-4974.
[14] Zhang J M, Xu K W, Ji V. Dependence of strain energy on the grain orientations in an FCC-polycrystalline film on rigid substrate [J]. Applied Surface Science, 2002, 185(3-4): 177-182.
[15] Li S J, Zhu Q S, Zheng B D, et al. Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition [J]. Materials Science and Engineering A, 2019, 758: 1-6.
[16] Sun F L, Gao L Y, Liu Z Q, et al. Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate [J]. Journal of Materials Science & Technology, 2018, 34(10): 1885-1890.
[17] Xu D, Kwan W L, Chen K, et al. Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition [J]. Applied Physics Letters, 2007, 91(25): 254105.
[18] Winand R. Electrocrystallization - theory and applications [J]. Hydrometallurgy, 1992, 29(1-3): 567-598.
[19] Kremmer K, Yezerska O, Schreiber G, et al. Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films [J]. Thin Solid Films, 2007, 515(17): 6698-6706.
[20] Jin S, Cheng Z, Pan Q S, et al. Effect of electrolyte additive concen-tration on microstructure of direct-current electrodeposited nanotwinned Cu [J]. Acta Metallurgica Sinica, 2016, 52(8): 973-979.
[21] Zhu Q S, Zhang X, Li S J, et al. Communication-electrodeposition of nano-twinned Cu in void-free filling for blind microvia of high density interconnect [J]. Journal of the Electrochemical Society, 2018, 166(1): D3097-D3099.
[22] Zhu Q S, Zhang X, Li S J, et al. Communication — Electrodeposition of nano-twinned Cu in void-free filling for blind microvia of high density interconnect [J]. Journal of the Electrochemical Society, 2018, 166(1): D3097-D3099.
[23] Zhang J M, Xu K W, Zhang M Y. Theory of abnormal grain growth in thin films and analysis of energy anisotropy [J]. Acta Physica Sinica, 2003(5): 1207-1212.
[24] Sung M, Kim H C, Lim T, et al. Effects of organic additives on grain growth in electrodeposited Cu thin film during self-annealing [J]. Journal of the Electrochemical Society, 2017, 164(13): D805-D809.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(8):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(8):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(8):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(8):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(8):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
备注/Memo
收稿日期: 2022-12-21 修回日期: 2023-01-04 作者简介: 张妍嘉( 1998 —),女,硕士研究生, email : zyj2081@sjtu.edu.cn * 通信作者: 凌惠琴, email : hqling@sjtu.edu.cn 基金项目: 国家自然科学基金资助项目( No.21972091 );国家自然科学基金资助项目( No.62004124 );国家自然科学 基 金重大项目( No.51991374 )