Hu Jiaqi,Qiu Shuang,Wang Yani,et al.Electrolytic deposition of Sb-Te thin-film thermoelectric materials in DMSO organic solution[J].Plating & Finishing,2023,(10):83-89.[doi:10.3969/j.issn.1001-3849.2023.10.014]
二甲基亚砜有机溶液中Sb-Te薄膜热电材料的电沉积制备
- Title:
- Electrolytic deposition of Sb-Te thin-film thermoelectric materials in DMSO organic solution
- Keywords:
- thermoelectric materials ; electrodeposition ; Sb-Te alloy ; DMSO
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 采用循环伏安以及阴极极化曲线的测试方法分析了二甲基亚砜有机溶液中纯 Sb 、纯 Te 、 Sb-Te 二元体系在 Au 电极上的还原过程。结合分析结果采用直流恒电位方式电沉积制备了 Sb-Te 二元薄膜热电材料,并采用 X 射线衍射( XRD )、扫描电子显微镜( SEM )、能谱仪( EDS )以及塞贝克系数测试系统对不同电位下制备出的 Sb-Te 二元薄膜热电材料的物相、形貌、组成、热电性能等进行了表征。结果表明:在 Au 电极上 Sb ( III )、 Te ( IV )离子的氧化还原行为均为不可逆过程,随着电位的不断负移,所制备出的薄膜热电材料表面粗糙度也在不断加大, Sb 、 Te 元素原子百分含量的比值在不断下降,不同电位下沉积出的材料均为 P 型热电材料。
- Abstract:
- : The reduction processes of Sb , Te and Sb-Te binary system in dimethyl sulfoxide organic solution ( DMSO ) on Au electrode were analyzed by cyclic voltammetry and cathodic polarization curve testing methods. Combining the analysis results , Sb-Te binary thin film thermoelectric materials were prepared by DC constant potential electrodeposition , and then X-ray diffraction ( XRD ), scanning electron microscopy ( SEM ), energy dispersive spectroscopy ( EDS ) and Seebeck coefficient test system were used to analyze the phase , morphology , composition and thermoelectric properties of the Sb-Te binary thin film thermoelectric materials prepared at different potentials. The results show that the redox behavior of Sb ( III ) and Te ( IV ) ions on the Au electrode are all irreversible processes. With the continuous negative shift of potential , the surface roughness of the prepared thin films continues to increase , and the ratio of Sb and Te atomic percentages continues to decrease. The materials deposited at different potentials are all P-type thermoelectric materials.
参考文献/References:
[1] Dharmaiah P, Lee K H, Song S H, et al. Enhanced thermoelectric performance of Bi 0.5 Sb 1.5 Te 3 composites through potential barrier scattering at heterogeneous interfaces[J]. Materials Research Bulletin, 2021, 133: 111023.
[2] Kim H S, Liu W S, Ren Z F. The bridge between the materials and devices of thermoelectric power generators[J]. Energy & Environmental Science, 2017, 10: 69-85.
[3] 徐庆 , 赵琨鹏 , 魏天然 , 等 . 热电材料的研究现状与未来展望 [J]. 硅酸盐学报 , 2021, 49(7): 1296-1305.
[4] 梁晶 , 周亮亮 , 李斌 , 等 . Sb 2 Te 3 量子点的制备、结构及红外性质研究 [J]. 红外与激光工程 , 2020, 49(1): 19-24.
[5] 郭燕红 . 碲化锑基低维材料的制备和物性研究 [D]. 乌鲁木齐 : 新疆大学 , 2017.
[6] 易文 , 赵永杰 , 王伯宇 , 等 . Sb 2 Te 3 基热电薄膜的研究进展 [J]. 硅酸盐学报 , 2021, 49(6): 1111-1124.
[7] 杨换丽 . 半导体热电材料 Bi-Sb 合金薄膜的电化学制备 [D]. 长沙 : 长沙理工大学 , 2012.
[8] 房博 . 碲化锑基纳米薄膜的制备及其热电性能研究 [D]. 上海 : 上海大学 , 2012.
[9] 穆武第 . 碲化铋基热电薄膜制备及其热电性能研究 [D]. 长沙 : 国防科学技术大学 , 2009.
[10] Zheng Z, Fan P, Lou J, et al. Thermoelectric properties of bismuth antimony tellurium thin films through bilayer annealing prepared by ion beam sputtering deposition[J]. Thin Solid Films, 2014, 562: 181-184.
[11] Noro H, Sato K, Kagechika H. The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering[J]. Journal of Applied Physics, 1993, 73: 1252-1260.
[12] Venkatasubramanian R, Colpitts T, Watko E, et al. MOCVD of Bi 2 Te 3 ,Sb 2 Te 3 and their superlattice structures for thin-film thermoelectric applications[J]. Journal of Crystal Growth, 1997, 170(01-04): 817-821.
[13] 裘武军 . 电化学沉积法制备薄膜 Bi 2 Te 3 基热电材料 [D]. 杭州 : 浙江大学 , 2011.
[14] 郭涛 , 李硕 , 姚雅萱 , 等 . Bi-Te 基薄膜热电材料的研究进展 [J]. 材料导报 , 2022, 36(4): 135-147.
[15] 秦海旭 . Sb 2 Te 3 基热电材料的微结构调控与掺杂改性 [D]. 哈尔滨 : 哈尔滨工业大学 , 2021.
[16] 高然 , 吴庆港 , 雷乐乐 , 等 . n 型有机热电材料掺杂改性的研究进展 [J]. 材料导报 , 2022, 36(10): 204-214.
[17] 张自勤 , 牛斌娜 , 李豪杰 , 等 . 碲化铋基热电材料复合改性的研究进展 [J]. 电镀与精饰 , 2021, 43(11): 48-54.
[18] 朱新宏 . 溶剂热法合成 Sb 2 Te 3 基热电材料 [D]. 武汉 : 武汉理工大学 , 2007.
[19] Shi W, Liang Z, Son S, et al. Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates[J]. Advanced Materials, 2010, 20(10): 1892-1897.
[20] 李菲晖 , 巩运兰 , 高镜涵 . 基材种类对 DMSO 体系中电沉积碲化铋薄膜热电材料的影响 [J]. 电镀与涂饰 , 2018, 37(12): 519-525.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(10):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(10):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(10):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(10):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(10):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(10):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
备注/Memo
收稿日期: 2023-06-26 修回日期: 2023-07-10 作者简介: 胡佳琦( 2002 —),女,本科生, email : 3050584786@qq.com * 通信作者: 李菲晖, email : tjlifeihui@126.com 基金项目: 国家自然科学基金资助项目( 22005219 )