Liu Jingkun,Ouyang Yibo,et al.Compositing fluid infused surface on Cu for corrosion inhibition[J].Plating & Finishing,2023,(11):46-53.[doi:10.3969/j.issn.1001-3849.2023.11.007]
复合流体涂层用于Cu金属的防腐蚀研究
- Title:
-
Compositing fluid infused surface on Cu for corrosion inhibition
- Keywords:
- superhydrophobic ; copper ; compositing fluid infused surface ; electrodeposition
- 分类号:
- TQ153.1
- 文献标志码:
- A
- 摘要:
- 采用电沉积法在纯铜表面制备了树枝状 Cu 2 O ,经过正十二硫醇改性制备超疏水涂层,将疏水化的 Fe 3 O 4 纳米颗粒与油相混合,注入超疏水铜表面,制备复合流体涂层。采用扫描电镜( SEM )、接触角测试仪对涂层不同阶段的形貌结构、润湿性进行了分析,采用扫描开尔文探针( SKP )研究了超疏水涂层、复合流体涂层与纯铜表面的电位变化,采用电化学阻抗谱和极化曲线等方法研究了超疏水涂层、复合流体涂层在大气环境和 3.5 wt.% NaCl 溶液中的耐腐蚀性能。结果表明,复合流体涂层在 3.5 wt.% NaCl 溶液中浸泡 20 d 后,腐蚀电流仍小于超疏水涂层和纯铜的腐蚀电流密度,复合流体涂层具有较好的耐久性和耐腐蚀性。
- Abstract:
- : In this paper , dendritic Cu 2 O structure was prepared on pure copper surface by electrodeposition , and the superhydrophobic coating was prepared by the modification with n-dodecanethiol. The hydrophobized Fe 3 O 4 nanoparticles and the oil phase were mixed and infused into the superhydrophobic copper surface to prepare a composite fluid coating. The morphology and wettability of the coating at different stages were analyzed by scanning electron microscope ( SEM ) and contact angle tester , respectively. The surface potential changes of superhydrophobic coating , composite fluid coating and pure copper were studied by scanning Kelvin probe ( SKP ) . The corrosion resistance of superhydrophobic composite fluid coating in atmospheric environment and 3.5 wt.% NaCl solution was studied by electrochemical impedance spectroscopy and polarization curve. The results showed that the corrosion current of the composite fluid coating was still lower than that of the superhydrophobic coating and pure copper after soaking in 3.5 wt.% NaCl solution for 20 days. The composite fluid coating had good durability and corrosion resistance.
参考文献/References:
[1] Latthe S S, Sutar R S, Kodag V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58.
[2] Wang Y, Xue J, Wang Q, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3370-3381.
[3] Ouyang Y B, Zhao J, Qiu R, et al. Bioinspired superhydrophobic and oil-infused surface: Which is the better choice to prevent marine biofouling?[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559: 297-304.
[4] Qiu R, Zhang D, Wang P. Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition[J]. Corrosion Science, 2013, 66: 350-359.
[5] Shi Z Q, Ouyang Y B, Qiu R, et al. Bioinspired superhydrophobic and oil-infused nanostructured surface for Cu corrosion inhi bition: A comparison study[J]. Progress in Organic Coatings, 2019, 131: 49-59.
[6] Celia E, Darmanin T, Elisabeth T D G, et al. Recent advances in designing superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2013, 402: 1-18.
[7] Liu H, Szunerits S, Xu W, et al. Preparation of superhydrophobic coatings on zinc as effective corrosion barriers[J]. ACS Applied Materials & Interfaces, 2009, 1(6): 1150-1153.
[8] Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.
[9] Yang S, Qiu R. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application[J]. Applied Surface Science, 2015, 328: 491-500.
[10] Ouyang Y B, Ri Q. Magnetic fluid based on mussel inspired chemistry as corrosion-resistant coating of NdFeB magnetic material [J]. Chemical Engineering Journal, 2019, 368: 331-339.
[11] Tuo Y, Zhang H, Chen W, et al. Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil[J]. Applied Surface Science, 2017, 423: 365-374.
[12] Lee J, Tak Y. Selective electrodeposition of ZnO onto Cu 2 O[J]. Electrochemistry Communications, 2000, 2(11): 765-768.
[13] Qiu R, Cha H G, Noh H B, et al. Preparation of dendritic copper nanostructures and their characterization for electroreduction[J]. The Journal of Physical Chemistry C, 2009, 113(36): 15891-15896.
相似文献/References:
[1]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(11):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[2]冒爱荣,姚 瑶,陈 亮,等.表面活性剂增感-火焰原子吸收光谱法测定痕量铜[J].电镀与精饰,2022,(1):6.[doi:10.3969/j.issn.1001-3849.2022.01.002]
MAO Airong YAO Yao CHEN Liang CAI Zhaosheng*.Determination of Trace Copper by Flame Atomic Absorption Spectrometry with Surfactant Sensitization[J].Plating & Finishing,2022,(11):6.[doi:10.3969/j.issn.1001-3849.2022.01.002]
[3]陈宇威,魏长伟,罗洪秦,等. 基于方波交流极化制备彩色超疏水不锈钢表面的研究 [J].电镀与精饰,2022,(9):25.[doi:10.3969/j.issn.1001-3849.2022.09.005]
CHEN Yuwei,WEI Changwei,LUO Hongqin,et al.Preparation of Colored Superhydrophobic Stainless Steel Surface Based on Square-Wave AC Polarization[J].Plating & Finishing,2022,(11):25.[doi:10.3969/j.issn.1001-3849.2022.09.005]
[4]谭 鑫*,李欣义,吴瑛琳,等. 简单且大尺寸超疏水硅橡胶涂层的制备 [J].电镀与精饰,2023,(10):90.[doi:10.3969/j.issn.1001-3849.2023.10.015]
Tan Xin*,Li Xinyi,Wu Yinglin,et al.Simple and large size method for preparing superhydrophobic silicone rubber coating[J].Plating & Finishing,2023,(11):90.[doi:10.3969/j.issn.1001-3849.2023.10.015]
[5]余金桂*,阮赣江,章桥新.基于碳纳米管涂装的超疏水表面及性能研究[J].电镀与精饰,2024,(6):78.[doi:10.3969/j.issn.1001-3849.2024.06.011]
Yu Jingui*,Ruan Ganjiang,Zhang Qiaoxin.Study on superhydrophobic surface and properties based on carbon nanotube coating[J].Plating & Finishing,2024,(11):78.[doi:10.3969/j.issn.1001-3849.2024.06.011]
备注/Memo
收稿日期: 2019-09-03 修回日期: 2019-10-28 作者简介 : 刘井坤( 1994 ―), 男,硕士,主要研究方向为材料腐蚀与防护, email : liujkscul@163.com 通讯著者: 马伯江, email : mbj2018@sina.com ;胡术刚, email : husg8921@163.com?/html>