Li Wenfeng,Tian Jiangbo*,Li Jia,et al.Electrodeposition of Zn-Mn alloy coating on the surface of power fittings and evaluation of its corrosion resistance[J].Plating & Finishing,2024,(9):69-75.[doi:doi: 10.3969/j.issn.1001-3849.2024.09.010]
电力金具表面电沉积Zn-Mn合金镀层及其耐蚀性能研究
- Title:
- Electrodeposition of Zn-Mn alloy coating on the surface of power fittings and evaluation of its corrosion resistance
- Keywords:
- Zn-Mn alloy coating; electrodeposition; corrosion resistance; passivation; electrochemical impedance spectroscopy.
- 分类号:
- TG176
- 文献标志码:
- A
- 摘要:
- Zn镀层是一种常见的防腐涂层,可作为牺牲阳极为电力金具提供良好的阴极保护。电沉积制备的Zn合金镀层可进一步提高镀层的耐蚀性,为电力金具提供更为有效的防护。采用X射线衍射、扫描电子显微镜、动电位极化曲线和电化学阻抗谱分别对Zn-Mn合金镀层的物相、微观形貌和耐蚀性能进行了表征,研究了镀液中MnSO4·H2O的含量对Zn-Mn合金镀层的影响。结果表明,Zn-Mn合金镀层在3.5 wt.% NaCl溶液中具有明显的钝化特征,其腐蚀电流密度低于纯Zn镀层,电化学阻抗值大于纯Zn镀层。当镀液中的MnSO4·H2O的含量为33.8 g/L时,所制备的Zn-Mn合金镀层(Zn-Mn II)具有平整致密的表面形貌和较高的Mn含量,其耐蚀性能最好。
- Abstract:
- Zn coating is one of the most commonly used anti-corrosion coating, which can act as a sacrificial anode to provide good cathodic protection for power fittings. The electrodeposited Zn alloy coatings can further improve the corrosion resistance, and provide more effective protection for electric fittings. To investigate the effects of MnSO4·H2O content in the plating bath on the Zn-Mn alloy coating, the X-ray diffraction (XRD), scanning electron microscopy (SEM), potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS) were employed to analyse the phase composition, micromorphology and corrosion resistance, respectively. The results show that the Zn-Mn alloy coating has obvious passivation characteristics in 3.5 wt.% NaCl solution. The corrosion current density of Zn- Mn alloy coating is lower than that of pure Zn coating, and the electrochemical impedance value of Zn-Mn alloy coating is bigger than that of pure Zn coating. When the MnSO 4·H2O is 33.8 g/L, the optimized Zn-Mn alloy coating (Zn-Mn II) exhibits a flat and dense surface topography and owns a high Mn content in the coating, resulting in the best corrosion resistance
参考文献/References:
[1].夏晓健, 金焱, 乔汉文, 等. 输变电设备腐蚀状况调查与分析[J]. 腐蚀科学与防护技术, 2019, 31(2): 121-127.
[2].吴天博, 王宗江. 架空输电线路金具腐蚀失效分析研究[J]. 电气开关, 2020, 58(1): 69-72.
[3].张培军, 李新梅, 杨现臣, 等. 镀锌层在室内模拟大气环境中腐蚀行为及寿命评估[J], 电镀与精饰,2023, 45(2): 94-100.
[4].Guo Q, Zhao Y, Xing Y, et al. Experimental and numerical analysis of mechanical behaviors of long-term atmospheric corroded Q235 steel[J]. Structures, 2022, 39: 115-131.
[5].赵书彦, 陈军君, 刘福春, 等. 新型硅土对电力金具涂层防护作用的影响[J]. 材料研究学报, 2016, 30(2): 107-114.
[6].Wang Z, Wang M, Jiang J, et al. Atmospheric corrosion analysis and rust evolution research of Q235 carbon steel at different exposure stages in Chengdu atmospheric environment of China[J]. Scanning, 2020, 1-8.
[7].鲁莽, 史天如. 架空输电线路金具柔性耐磨重防腐蚀涂层的性能[J]. 材料保护, 2015, 48.10: 48-50.
[8].党乐, 郭金刚, 崔亚茹, 等. 架空输电线路金具材料研究现状及发展[J]. 电气技术, 2022, 23.4: 1-6.
[9].Padhan S, Rout T K, Nair U G, N-doped and Cu, N-doped carbon dots as corrosion inhibitor for mild steel corrosion in acid medium[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 653: 129905.
[10].Eliaz N, Venkatakrishna K, Hegde A C. Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys[J]. Surface & Coatings Technology, 2010, 205:1969-1978.
[11].Lotfi N, Aliofkhazraei M, Rahmani H; et al. Zinc-Nickel Alloy Electrodeposition: Characterization, Properties, Multilayers and Composites[J]. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54: 1102-1140.
[12].Gharahcheshmeh M H, Sohi M H. Electrochemical studies of zinc–cobalt alloy coatings deposited from alkaline baths containing glycine as complexing agent[J]. Journal of Applied Electrochemistry, 2010, 40: 1563-1570.
[13].Sahayata B, Mahanta S K, Upadhyay P, et al. An approach to improve corrosion resistance in electro-galvanized Zn-Al composite coating by induced passivity[J]. Materials Letters, 2023, 351: 135013.
[14].Loukil N, Feki M. Zn–Mn electrodeposition: a literature review. Journal of The Electrochemical Society[J]. 2020, 167(2): 022503.
[15].Loukil N, Feki M. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization. Applied Surface Science[J]. 2017, 410: 574-584.
[16].Allam L, Lazar F, Benfedda B, et al. Zn-Mn alloy coating elaboration by magnetoelectrodeposition. Journal of Solid State Electrochemistry[J]. 2021, 25(7): 2041-2053.
[17].Alimadadi H, Ahmadi M, Aliofkhazraei M, et al. Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni–W alloy[J]. Materials & design, 2009, 30(4): 1356-1361.
[18].ORTIZ Z I, Díaz-Arista P, Meas Y, et al. Characterization of the corrosion products of electrodeposited Zn, Zn–Co and Zn-Mn alloys coatings [J]. Corrosion Science, 2009, 51:703-2715.
[19].Abedini B, AHMADI N P, Yazdani S et al. Electrodeposition and corrosion behavior of Zn-Ni-Mn alloy coatings deposited from alkaline solution[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(2): 548-558.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(9):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(9):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(9):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(9):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(9):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(9):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(9):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(9):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(9):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(9):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]