Li Xiaokun*,Lei Mingke,Huang Shuai.Electrodeposition of Co-Mo-P/GO composite coating on sintered NdFeB and its corrosion resistance[J].Plating & Finishing,2025,(02):1-8.
doi: 10.3969/j.issn.1001-3849.2025.02.001烧结钕铁硼电沉积Co-Mo-P/GO复合镀层及耐蚀性研究
- Title:
- Electrodeposition of Co-Mo-P/GO composite coating on sintered NdFeB and its corrosion resistance
- 关键词:
- Co-Mo-P/GO复合镀层; 电沉积; 烧结钕铁硼; 氧化石墨烯; 耐蚀性
- Keywords:
- Co-Mo-P/GO composite coating; electrodeposition; sintered NdFeB; graphene oxide; corrosion resistance
- 分类号:
- TQ153.6
- 文献标志码:
- A
- 摘要:
- 在烧结钕铁硼表面电沉积掺杂氧化石墨烯(Graphene Oxide,简写为GO)片的Co-Mo-P/GO复合镀层,采用X射线衍射仪、扫描电镜和能谱仪分析复合镀层的物相结构、形貌及表面成分,并采用电化学工作站结合浸泡腐蚀方法测试复合镀层的耐蚀性。结果表明:Co-Mo-P/GO复合镀层的表面成分主要为Co、Mo、P和C元素,与Co-P合金镀层和Co-Mo-P合金镀层相比具有更致密表面结构。Co-Mo-P/GO复合镀层的电荷转移电阻以及在频率为10–2 Hz 处的阻抗模值分别达到3.12×103 Ω·cm 2、9.64×103 Ω·cm 2,较烧结钕铁硼分别提高约1 700 Ω·cm2、6 500 Ω·cm2,腐蚀电流密度(9.52×10–7 A/cm 2)较烧结钕铁硼的降低幅度超过一个数量级。Co-Mo-P/GO复合镀层的腐蚀速率仅为4.42 mg/(cm2·h),较烧结钕铁硼降低约59%,并且在3.5%氯化钠溶液中浸泡72 h后整体腐蚀程度最轻。GO在Co-Mo-P/GO复合镀层中呈较均匀分散状态,起到明显细化晶粒作用并且极大增加腐蚀阻力,因而复合镀层的耐蚀性好于Co-P合金镀层和Co-Mo-P合金镀层,能显著提高烧结钕铁硼的耐蚀性。
- Abstract:
- Co-Mo-P/GO composite coating doped with graphene oxide (GO) flake powder was electrodeposited on the surface of sintered NdFeB. The phase structure, morphology and surface composition of the composite coating were analyzed by X-ray diffractometer, scanning electron microscopy and energy spectrometer, and the corrosion resistance of the composite coating was tested by electrochemical workstation combined with immersion corrosion method. The results show that the surface composition of Co-Mo-P/GO composite coating is mainly Co, Mo, P and C elements, and the surface structure is denser than that of Co-P alloy coating and Co-Mo-P alloy coating. The charge transfer resistance of Co-Mo-P/GO composite coating and the impedance mode value at the frequency of 10–2 Hz reach 3.12×10 3 Ω·cm 2 and 9.64×10 3 Ω·cm 2 respectively, which are about 1 700 Ω·cm 2 and 6 500 Ω·cm 2 and higher than those of sintered NdFeB. The corrosion current density of Co-Mo-P/GO composite coating is 9.52×10 –7 A/cm 2, which is more than one order of magnitude lower than that of sintered NdFeB, and the corrosion rate (4.42 mg/(cm2·h)) is about 59% lower than that of sintered NdFeB. The overall corrosion degree of Co-Mo-P/GO composite coating is the lightest after soaking in 3.5% sodium chloride solution for 72 h. Many GO are doped in Co-Mo-P/GO composite coating showing a relatively uniform dispersion state, which plays a significant role in refining grains and greatly increases corrosion resistance, so the corrosion resistance of the composite coating is better than that of Co-P alloy coating and Co-Mo-P alloy coating, and the composite coating can play a better anti-corrosion effect to significantly improve the corrosion resistance of sintered NdFeB
参考文献/References:
[1].曹玉杰, 刘友好, 张鹏杰, 等. 纳米CeO2掺杂对烧结钕铁硼磁体表面Zn-Al涂层性能的影响[J]. 中国表面工程, 2020, 33(6): 100-107.
[2].邓志伟, 张友亮, 张守华. 用于钕铁硼永磁材料镀锌的钝化工艺研究[J]. 化工管理, 2023(2): 143-146.
[3].李孝坤, 闫凯, 刘忻. 工艺参数对钕铁硼化学镀Ni-Mo-P/PTFE复合镀层耐蚀性的影响[J]. 电镀与精饰, 2022, 44(3): 35-39.
[4].王左才, 么玲一, 孟佳宏. 浸涂/喷涂涂装在粘结钕铁硼表面防腐上的应用[J]. 表面技术, 2005, 34(2): 71-73.
[5].唐国才, 阙永生, 周晓庆, 等. 酸洗和磷化对钕铁硼磁体表面涂层性能的影响[J]. 电镀与涂饰, 2022, 41(18): 1294-1298.
[6].任黄威, 周军, 宗志芳, 等. 电流密度对烧结钕铁硼电镀镍性能的影响[J]. 电镀与涂饰, 2022, 41(13): 912-916.
[7].Chen C A, Lee J L, Jian S Y, et al. Effect of surface activation on the corrosion resistance of a MAO/Ni-P composite coating on LZ91 magnesium alloy[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 147: 104881.
[8].Mei S Q, Zhou C, Hu Z K, et al. Preparation of a Ni-P nano PTFE composite coating on the surface of GCr15 steel for spinning rings via a defoamer and transition layer and its wear and corrosion resistance[J]. Materials, 2023, 16(12): 4427.
[9].付传起, 林永威, 黄亚忠, 等. Ni-氧化石墨烯纳米复合镀层的力学及抗腐蚀性能研究[J]. 表面技术, 2023, 52(8): 290-300.
[10].田雅琴, 刘文涛, 胡梦辉, 等. 镍-二氧化钛复合镀层的制备及耐腐蚀性研究[J]. 功能材料, 2023, 54(10): 10224-10230.
[11]. Tan S, Algul H, Kilicaslan E, et al. The effect of ultrasonic power on high temperature wear and corrosion resistance for Ni based alloy composite coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130345.
[12]. Song J X, Zhang Y H, He Y, et al. Synthesis of Ni-B/diamond-Y2O3 binary nano-composite coatings and research on corrosion resistance and wear resistance of coatings with different pulse frequencies[J]. Journal of Solid State Electrochemistry, 2023, 27: 207-221.
[13]. 李智, 刘崇宇, 葛毓立, 等. 氧化石墨烯对纳米金属陶瓷复合镀层组织性能影响[J]. 表面技术, 2023, 52(10): 394-404.
[14]. 付传起, 林永威, 黄亚忠, 等. Ni-氧化石墨烯纳米复合镀层的力学及抗腐蚀性能研究[J]. 表面技术, 2023, 52(8): 290-300.
[15]. 任鑫, 江仁康, 初鑫, 等. 氧化石墨烯含量对电沉积镍-氧化石墨烯复合镀层结构及性能影响[J]. 材料热处理学报, 2021, 42(1): 165-172.
[16]. 胡正西, 揭晓华, 卢国辉. 碳纳米管铅锡复合减摩镀层的内应力研究[J]. 热加工工艺, 2011, 40(10): 122-125.
[17]. 彭超, 殷志伟, 汪晓, 等. 十二烷基硫酸钠和1.4-丁炔二醇电沉积Ni-W合金的机理[J]. 粉末冶金材料科学与工程, 2011, 16(2): 167-174.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(02):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(02):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(02):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(02):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(02):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(02):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(02):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(02):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(02):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(02):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]