PDF下载 分享
[1]孟香茗,宋振兴*,卜路霞,等.电沉积法制备纳米线阵列的研究进展[J].电镀与精饰,2021,(6):35-40.[doi:10.3969/j.issn.1001-3849.2021.06.008]
 MENG Xiangming,SONG Zhenxing*,BU Luxia,et al.Research Progress of Producing Nanowire Arrays by Electrodeposition[J].Plating & Finishing,2021,(6):35-40.[doi:10.3969/j.issn.1001-3849.2021.06.008]
点击复制

电沉积法制备纳米线阵列的研究进展

参考文献/References:

[1] Li L, Zhang Y Q, Liu X Y, et al. One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage[J]. Electrochimica Acta, 2014, 116: 467-474.
[2] Kim K, Kim M, Cho S M. Pulsed electrodeposition of palladium nanowire arrays using AAO template[J]. Materials Chemistry and Physics, 2005, 96(2): 278-282.
[3] Xu D S, Xu Y J, Chen D P, et al. Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates[J]. Chemical Physics Letters, 2000, 325(4): 340-344.
[4] Xu J X, Wang K Y. Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties[J]. Applied Surface Science, 2008, 254(20): 6623-6627.
[5] Oleg L, Vasilii C, Vasile P, et al. Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response[J]. Sensors and Actuators B: Chemical, 2016, 223: 893-903.
[6] Dong J P, Ren L X, Zhang Y, et al. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing[J]. Talanta, 2015, 132: 719-726.
[7] Zhang H Q, Wang Y N, Gao X S, et al. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose[J]. Progress in Natural Science: Materials International, 2017, 27(3): 311-315.
[8] Qin L R, He L Z, Zhao J W, et al. Synthesis of Ni/Au multilayer nanowire arrays for ultrasensitive non-enzymatic sensing of glucose[J]. Sensors and Actuators B: Chemical, 2017, 240: 779-784.
[9] Wang L F, Lu W B, Zhu W Q, et al. A photoelectrochemical sensor for highly sensitive detection of glucose based on Au-NiO1- x hybrid nanowires[J]. Sensors and Actuators B: Chemical, 2020, 304: 127330.1-127330.8.
[10] Kurowska E, Brzózka A, Jarosz M, et al. Silver nanowire array sensor for sensitive and rapid detection of H2O2[J]. Electrochimica Acta, 2013, 104: 439-447.
[11] Patella B, Russoa R R, ORiordan A, et al. Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water[J]. Talanta, 2021, 221: 121643.1-121643.7.
[12] Gupta J, Arya S, Verma S, et al. Performance of template-assisted electrodeposited Copper/Cobalt bilayered nanowires as an efficient glucose and uric acid senor[J]. Materials Chemistry and Physics, 2019, 238: 121969.1-121969.11.
[13] Xu K, Yu X, Zhao W, et al. Density-dependent of gas-sensing properties of Co3O4 nanowire arrays[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 118: 113956.1-113956.7.
[14] Wang L B, Zhao Y Y, Zheng K S, et al. Fabrication of large-area ZnO nanowire field emitter arrays by thermal oxidation for high-current application[J]. Applied Surface Science, 2019, 484: 966-974.
[15] Song Z X, Xie Y J, Yao S W, et al. Field emission properties of electrodeposited cobalt nanowire arrays grown in anodic aluminum oxide[J]. Materials Letters, 2010, 65(1): 44-45.
[16] He Z, Liang Z H, Zhang X N, et al. Influence of copper nanowires grown in a dielectric layer on the performance of dielectric barrier discharge[J]. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 2016, 35(1): 010603.1-010603.5.
[17] 李芹, 张海明, 李菁, 等. 硅基AAO模板内电化学沉积ZnO纳米线及其光电性能研究[J]. 人工晶体学报, 2012, 41(1): 136-140.
Li Q, Zhang H M, Li J, et al. Study on preparation and photoelectric properties of ZnO nanowires within AAO/Si substrate by electrodeposition process[J]. Journal of Synthetic Crystals, 2012, 41(1): 136-140(in Chinese).
[18] Li W J, Khan U, Irfan M, et al. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires[J]. Journal of Magnetism and Magnetic Materials, 2017, 432: 124-128.
[19] Xu J C, Zhang J, Wang J, et al. Effects of gradient diameter on magnetic properties of FeNi alloys nanowires arrays[J]. Journal of Magnetism and Magnetic Materials, 2020, 499(C): 166207.1-166207.7.
[20] 姚素薇, 宋振兴, 王宏智. Co/Cu多层纳米线阵列的制备与磁性能[J]. 物理化学学报, 2007, 23(8): 1306-1310.
Yao S W, Song Z X, Wang H Z. Fabrication and magnetic properties of Co/Cu multilayer nanowire Arrays[J]. Acta Physico-Chimica Sinica, 2007, 23(8): 1306-1310(in Chinese).
[21] Song Z X, Xie Y J, Yao S W, et al. Microstructure and magnetic properties of electrodeposited Co/Cu multilayer nanowire arrays[J]. Materials Letters, 2011, 65(11): 1562-1564.
[22] Zhang W G, Deng H Q, Li H C, et al. Synthesis and magnetic properties of Ni-Fe/Cu/Co/Cu multilayer nanowire arrays[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(4): 2520-2524.
[23] Wang H Z, Huang B, Li H C, et al. Effect of sub-layer thickness on magnetic and giant magnetoresistance properties of Ni-Fe/Cu/Co/Cu multilayered nanowire arrays[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1231-1235.
[24] 张卫国, 马晓龙, 许琰, 等. 热处理对[NiFe/Cu/Co/Cu]n纳米多层线磁性能的影响[J]. 物理化学学报, 2014, 30(4): 768-772.
Zhang W G, Ma X L, Xu Y, et al. Effects of annealing on the magnetic properties of [NiFe/Cu/Co/Cu]n multilayer nanowire arrays[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 768-772(in Chinese).
[25] Zhang W G, Li H C, Wang H Z, et al. Effect of nanowire diameter and period number on magnetic properties and CPP-GMR of Ni-Fe/Cu/Co/Cu multilayer nanowire arrays[J]. Journal of Electrochemical Society, 2014, 161(4): 176-180.
[26] Labchir N, Hannour A, Vincent D, et al. Magnetic field effect on electrodeposition of CoFe2O4 nanowires[J]. Applied Physics A, 2019, 125(11): 1-9.
[27] Guo J, Cui C X, Yang W, et al. Microstructures and magnetic properties of Tb-Fe-Co magnetic nanowire arrays prepared by electrochemical deposition[J]. Superlattices and Microstructures, 2019, 128: 298-306.
[28] Liu C Q, Ethan A, Li Z Y, et al. Effect of metal substrate on electrocatalytic property of palladium nanowire array for high performance ethanol electro-oxidation[J]. Langmuir : the ACS Journal of Surfaces and Colloids, 2019, 35(43): 13821-13832.
[29] Zhang L Q, Liu L C, Wang H D, et al. Electrodeposition of rhodium nanowires arrays and their morphology-dependent hydrogen evolution activity[J]. Nanomaterials, 2017, 7(5): 257-264.
[30] Wang C Z, Zhang Y, Zhang Y J, et al. Highly ordered hierarchical Pt and PtNi nanowire arrays for enhanced electrocatalytic activity toward methanol oxidation[J]. ACS Applied Materials and Interfaces, 2018, 10(11): 9444-9450.
[31] Du M M, Sun H J, Li J W, et al. Integrative Ni@Pd‐Ni alloy nanowire array electrocatalysts boost hydrazine oxidation kinetics[J]. ChemElectroChem, 2019, 6(22): 5581-5587.
[32] Ma X K, Ye K, Wang G, et al. Facile fabrication of gold coated nickel nanoarrays and its excellent catalytic performance towards sodium borohydride electro-oxidation[J]. Applied Surface Science, 2017, 414: 353-360.
[33] Cui Y P, Peng L, Lei L D, et al. Synthesis and photocatalytic performance of superparamagnetic Fe-Ag@AgCl nanowire with 1-D core-shell structure under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397: 112586.1-112586.8.
[34] 王宏智, 卢敬, 姚素薇, 等. 控电位法制备CdSe纳米线阵列及其性能研究[J]. 电镀与精饰, 2014, 36(7): 1-6.
Wang H Z, Lu J, Yao S W, et al. Synthesis and photoelectrochemical properties of CdSe nanowires by constant potential deposition method[J]. Plating and Finishing, 2014, 36(07): 1-6 (in Chinese).
[35] Fan H Q, Yang J, Huang L A, et al. Controllable fabrication of hierarchical top-converged Co3O4 nanowire array with enhanced lithium storage performance[J]. Materials Chemistry and Physics, 2017, 198: 107-114.
[36] Hua K, Li X J, Fang D, et al. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery[J]. Applied Surface Science, 2018, 447: 610-616.
[37] Li X J, Wu Y C, Hua K, et al. Vertically aligned polyaniline nanowire arrays for lithium-ion battery[J]. Colloid and Polymer Science, 2018, 296(8): 1395-1400.
[38] 刘奔, 张行颖, 陈韶云, 等. 一维有序聚苯胺纳米阵列的制备及电化学储能性能[J]. 高等学校化学学报, 2019, 40(3): 498-507.
Liu B, Zhang X Y, Chen S Y, et al. Preparation and electrochemicl energy storage performance of one dimensional orderly polyaniline nanowires array[J]. Chemical Journal of Chinese Universities, 2019, 40(3): 498-507 (in Chinese).
[39] Zhao G Y, Zhang D, Zhang L, et al. Ti@δ-MnO2 core-shell nanowire arrays as self-supported electrodes of supercapacitors and Li ion batteries[J]. Electrochimica Acta, 2016, 202: 8-13.
[40] Schiavi P G, Farina L, Altimari P, et al. A versatile electrochemical method to synthesize Co-CoO core-shell nanowires anodes for lithium ion batteries with superior stability and rate capability[J]. Electrochimica Acta, 2018, 290: 347-355.
[41] Yan Y Q, Ding S X, Zhou X Y, et al. Controllable preparation of core-shell Co3O4@CoNiS nanowires for ultra-long life asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2021, 867: 158941.1-158941.8.

相似文献/References:

[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
 ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(6):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
 LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(6):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
 LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(6):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
 ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(6):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
 HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(6):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
 XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(6):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
 XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(6):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
 GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(6):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
 WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(6):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
 YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]

备注/Memo

收稿日期: 2020-04-07;修回日期: 2020-05-10
作者简介: 孟香茗(1995—),女,硕士研究生
通信作者: 宋振兴(1981—),主要从事表面处理及碳纳米材料技术研究。email: szxtju@126.com
基金项目: 第十六届“挑战杯”天津科技大学大学生课外学术科技作品竞赛(3E66B)

更新日期/Last Update: 2021-06-10